Voordeelbundel
ISYE 6414 Bundle 2024/2025 with complete solution
ISYE 6414 Bundle 2024/2025 with complete solution
[Meer zien]ISYE 6414 Bundle 2024/2025 with complete solution
[Meer zien]In logistic regression, we model the__________________, not the response variable, given the 
predicting variables. - Answer-probability of a success 
g link function - Answer-link the probability of success to the predicting variables 
3 assumptions of the logistic regression model - Answer-Lineari...
Voorbeeld 2 van de 14 pagina's
In winkelwagenIn logistic regression, we model the__________________, not the response variable, given the 
predicting variables. - Answer-probability of a success 
g link function - Answer-link the probability of success to the predicting variables 
3 assumptions of the logistic regression model - Answer-Lineari...
If λ=1 - Answer-we do not transform 
non-deterministic - Answer-Regression analysis is one of the simplest ways we have in statistics to 
investigate the relationship between two or more variables in a ___ way 
random - Answer-The response variable is a ___ variable, because it varies with changes ...
Voorbeeld 3 van de 21 pagina's
In winkelwagenIf λ=1 - Answer-we do not transform 
non-deterministic - Answer-Regression analysis is one of the simplest ways we have in statistics to 
investigate the relationship between two or more variables in a ___ way 
random - Answer-The response variable is a ___ variable, because it varies with changes ...
Logistic Regression - Answer-Commonly used for modeling binary response data. The response variable 
is a binary variable, and thus, not normally distributed. 
In logistic regression, we model the probability of a success, not the response variable. In this model, we 
do not have an error term 
g-fu...
Voorbeeld 3 van de 30 pagina's
In winkelwagenLogistic Regression - Answer-Commonly used for modeling binary response data. The response variable 
is a binary variable, and thus, not normally distributed. 
In logistic regression, we model the probability of a success, not the response variable. In this model, we 
do not have an error term 
g-fu...
1. If there are variables that need to be used to control the bias selection in the model, they should 
forced to be in the model and not being part of the variable selection process. - Answer-True 
2. Penalization in linear regression models means penalizing for complex models, that is, models with...
Voorbeeld 1 van de 4 pagina's
In winkelwagen1. If there are variables that need to be used to control the bias selection in the model, they should 
forced to be in the model and not being part of the variable selection process. - Answer-True 
2. Penalization in linear regression models means penalizing for complex models, that is, models with...
Least Square Elimination (LSE) cannot be applied to GLM models. - Answer-False - it is applicable but 
does not use data distribution information fully. 
In multiple linear regression with idd and equal variance, the least squares estimation of regression 
coefficients are always unbiased. - Answer-...
Voorbeeld 2 van de 11 pagina's
In winkelwagenLeast Square Elimination (LSE) cannot be applied to GLM models. - Answer-False - it is applicable but 
does not use data distribution information fully. 
In multiple linear regression with idd and equal variance, the least squares estimation of regression 
coefficients are always unbiased. - Answer-...
1. All regularized regression approaches can be used for variable selection. - False 
2. Penalization in linear regression models means penalizing for complex models, that is, models with a 
large number of predictors. - True 
3. Elastic net regression uses both penalties of the ridge and lasso regr...
Voorbeeld 1 van de 4 pagina's
In winkelwagen1. All regularized regression approaches can be used for variable selection. - False 
2. Penalization in linear regression models means penalizing for complex models, that is, models with a 
large number of predictors. - True 
3. Elastic net regression uses both penalties of the ridge and lasso regr...
Linearity/Mean zero assumption - Means that the expected value (deviances) of errors is zero. 
This leads to difficulties in estimating B0 and means that our model does not include a necessary 
systematic component 
Constant variance assumption - Means that it cannot be true that the model is more a...
Voorbeeld 4 van de 46 pagina's
In winkelwagenLinearity/Mean zero assumption - Means that the expected value (deviances) of errors is zero. 
This leads to difficulties in estimating B0 and means that our model does not include a necessary 
systematic component 
Constant variance assumption - Means that it cannot be true that the model is more a...
Regression Estimator Properties - Unbiasedness: This is the property that the expectation of the 
estimator is exactly the true parameter. What this means is that Beta_1_hat is an unbiased estimator for 
Beta_1 
Model Parameter Interpretation - a positive value for Beta_1, then that's consistent wi...
Voorbeeld 2 van de 11 pagina's
In winkelwagenRegression Estimator Properties - Unbiasedness: This is the property that the expectation of the 
estimator is exactly the true parameter. What this means is that Beta_1_hat is an unbiased estimator for 
Beta_1 
Model Parameter Interpretation - a positive value for Beta_1, then that's consistent wi...
For assessing the normality assumption of the ANOVA model, we can only use the quantile-quantile 
normal plot of the residuals. - False 
In simple linear regression models, we loose three degrees of freedom because of the estimation of the 
three model parameters, B0, B1, and Sigma^2? - False 
In ev...
Voorbeeld 2 van de 8 pagina's
In winkelwagenFor assessing the normality assumption of the ANOVA model, we can only use the quantile-quantile 
normal plot of the residuals. - False 
In simple linear regression models, we loose three degrees of freedom because of the estimation of the 
three model parameters, B0, B1, and Sigma^2? - False 
In ev...
Using MLE, can we derive estimated coefficients/parameters in exact form? - No, they are 
approximate estimated parameters 
T/F: The sampling distribution of the predicted response variable used in statistical inference is normal in 
multiple linear regression under the normality assumption. - F 
Cl...
Voorbeeld 2 van de 15 pagina's
In winkelwagenUsing MLE, can we derive estimated coefficients/parameters in exact form? - No, they are 
approximate estimated parameters 
T/F: The sampling distribution of the predicted response variable used in statistical inference is normal in 
multiple linear regression under the normality assumption. - F 
Cl...
In a greenhouse experiment with several predictors, the response variable is the 
number of seeds that germinate out of 60 that are planted with different treatment 
combinations. A Poisson regression model is most appropriate for modeling this 
data - False - poisson regression models rate or count...
Voorbeeld 2 van de 12 pagina's
In winkelwagenIn a greenhouse experiment with several predictors, the response variable is the 
number of seeds that germinate out of 60 that are planted with different treatment 
combinations. A Poisson regression model is most appropriate for modeling this 
data - False - poisson regression models rate or count...
σ^2 (sample distribution of the variance estimator) - is chi-squared distribution with n - 2 degrees 
of freedom (We 
lose two degrees of freedom because we replaced the two parameters ß0 and ß1 with 
their estimators to obtain the residuals.) 
constant variance assumption - which means that the ...
Voorbeeld 3 van de 21 pagina's
In winkelwagenσ^2 (sample distribution of the variance estimator) - is chi-squared distribution with n - 2 degrees 
of freedom (We 
lose two degrees of freedom because we replaced the two parameters ß0 and ß1 with 
their estimators to obtain the residuals.) 
constant variance assumption - which means that the ...
The number of degrees of freedom of the χ 2 (chi-square) distribution for the pooled variance estimator 
is N − k + 1 where k is the number of samples. - False 
If the confidence interval for a regression coefficient contains the value zero, we interpret that the 
regression coefficient is defini...
Voorbeeld 2 van de 8 pagina's
In winkelwagenThe number of degrees of freedom of the χ 2 (chi-square) distribution for the pooled variance estimator 
is N − k + 1 where k is the number of samples. - False 
If the confidence interval for a regression coefficient contains the value zero, we interpret that the 
regression coefficient is defini...
Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!
Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.
Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper ACADEMICMATERIALS. Stuvia faciliteert de betaling aan de verkoper.
Nee, je koopt alleen deze samenvatting voor $42.04. Je zit daarna nergens aan vast.
4,6 sterren op Google & Trustpilot (+1000 reviews)
Afgelopen 30 dagen zijn er 66184 samenvattingen verkocht
Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen