100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
Summary Introduction to Research in Marketing (Fall) 5,49 €
In den Einkaufswagen

Zusammenfassung

Summary Introduction to Research in Marketing (Fall)

 17 mal angesehen  1 mal verkauft
  • Kurs
  • Hochschule
  • Book

Summary of the course Introduction To Research in Marketing (fall) with the following subjects: - Introduction, data exploration and visualization - ANOVA - Cluster analysis - Factor analysis - Logistic regression - Conjoint analysis - Multidimensional scaling

vorschau 2 aus 12   Seiten

  • Ja
  • 13. juni 2021
  • 12
  • 2020/2021
  • Zusammenfassung
avatar-seller
1. INTRODUCTION, DATA EXPLORATION AND VISUALIZATION
Total error What you observe = true value + sampling error + measurement error + statistical
framework error (you don’t observe). If you mess up the errors, your results will be biased

Statistics Characteristics of the sample (estimates the parameters)

Parameters Characteristics of the population

Coverage error Target population (voters) to frame population (everyone with telephone)

Sample error Frame population (everyone with telephone) to sample population (random digit)

Non-response error Sample population (random digit) to respondents (accept the call), biggest error

Post-strati cation Making your sample close to your population (e.g. when population 50% female
weights and sample 80% female), weighting this to come to better sample and outcome



Measurement scales Non-metric and metric (continuous), right statistical technique depends on this

Non-metric Nominal (categorical) and ordinal —> outcomes can be categorical (labels) or
directional (only measure direction of response, e.g. yes/no)

Metric Interval and ratio —> continuous scales not only measure direction or
classi cation, but intensity as well (e.g. strongly agree or somewhat agree)

Nominal Number only serves as label for identifying objects in mutually exclusive (not at
same time) and collectively exhaustive (at least one) categories (e.g. SNR,gender)

Ordinal Numbers are assigned to objects to indicate relative positions of characteristics
of objects, but not magnitude of di erence between them (e.g. preference, ranks)

Interval Numbers are assigned to objects to indicate relative positions of some
characteristics of objects with di erences between objects being comparable,
zero point is arbitrary (e.g. Likert scale, temperature Fahrenheit/Celcius)

Ratio Most precise scale, absolute zero point, has all advantages of other scales (e.g.
weight, height, age, income, temperature Kelvin)

Summated scales Measuring attitudes/feelings/beliefs that are more abstract and di cult than age
and income (multiple question to capture everything (reduce measurement error))

Validity and reliability Validity: measure what it’s supposed/wanted to measure? Does it make sense?
Reliability: is the outcome stable? Do results change if changing variables?




Statistical error Two outcomes: fail to reject null (null true) and reject null. Two types of error:
(hypothesis testing) - Type I: in reality nothing is going on (null true) but data shows something is
going on (reject null), false positive (doctor says man is pregnant, but not true)
- Type II: in reality something is going on and data shows nothing is going on,
false negative (female is pregnant, but doctor says she is not), setting power

P-value (alpha) Probability of observed data/statistic given that null hypothesis is true (< 0.05),
so what is the chance that we found the data that we did if null is true in reality

Exploration Always explore data before running any model (recode missings, reverse code
negatively worded questions, check range variables, check mutually consistency)

Visualization Exploration, understanding/making sense of data, communicating results (charts)




fi fi ff ff ffi

, 2. ANOVA
1. De ning objectives Test if there are di erences in the mean of a metric (interval/ratio) dependent
variable across di erent levels of one or more non-metric (nominal/ordinal)
independent variables (‘factors’), one-way/two-way ANOVA (experiments)

2. Designing study 2.1 Sample size
Determine e ect size with previous literature or using Cohen’s F

Signal = between groups
Noise = within a group


How smaller the e ect, how larger the sample needs to be and vice versa

Sensitivity analysis: how changes my sample size if e ect size changed?

2.2 Interactions
Interaction is the e ect of one variable on the DV is dependent on another
(interaction e ect), interaction between IVs (treatment/categorical variables)

2.3 Use covariates (control variables) by doing ANCOVA
Covariates a ect DV separately from treatment variables (IVs), requirements:
- Pre-measure (before outcome, otherwise they may intervene)
- Independent of treatment
- Limited number (< (0.1) * # observations - (# populations - 1)
3. Checking assumptions 3.1 Independence (most important)
Are the observations independent? —> when there is no pattern in the plot
A ects your estimates and standard errors

- “Between-subjects” design: each unit of analysis (row, respondent) sees
only one combination of IVs
- “Within-subjects” design: each unit of analysis sees all treatments
(counterbalance order of treatments, allow di erences)

3.2 Equality of variance/homoscedasticity (Levene’s test)
Is the variance equal across treatment groups? —> not reject null (> 0.05)
A ects your standard errors

What if homoscedasticity rejected?
1. If sample size is similar across treatment groups —> ANOVA robust (ok)
2. Transform dependent variable (e.g. take log(DV)) —> redo test
3. Add covariate —> ANCOVA, redo test

3.3 Normality (least important)
Is the DV approximately normally distributed? —> not reject null (> 0.05)
A ects your standard errors only if sample is small

What if normality rejected?
1. Large sample —> ANOVA robust
2. Small sample —> transform DV to make distribution more symmetric

4. Estimating model Calculation F-value (variation between groups larger than within groups?):
Mean sum of squares between groups (MSSB)
Mean sum of squares within groups (MSSW)

Large F (high signal/low noise): reject null of no di erences across groups




ff

fi ffffff ffffff ff ff ff

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer dilemmasmit. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für 5,49 €. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 15 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf
5,49 €  1x  verkauft
  • (0)
In den Einkaufswagen
Hinzugefügt