Fachgebiet Technische Thermodynamik TU Darmstadt Übungstermin: 30. Mai 2018
Prof. Dr.-Ing. P. Stephan FB Maschinenbau B. Franz
Technische Thermodynamik II SoSe 2018
3. Übungsblatt (Verbrennung)
Aufgabe 7
Im Brenner einer Ölheizung werden kontinuierlich ṀÖl = 0.1 g/s der Temperatur t Öl = 12 °C isobar ( p = 1 bar) bei einem
Luftverhältnis von λ = 1.1 mit trockener Luft ( yO2 = 0.21, M O2 = 32 kg/kmol, yN2 = 0.79, M N2 = 28 kg/kmol) der
Temperatur t Luft = 10 °C verbrannt. Die Abgase verlassen den Brenner mit t A = 200 °C.
a) Wie groß ist der Luftmassenstrom ṀL in g/s, welcher der Brennkammer zugeführt wird? ( ṀL = 1.586 g/s)
b) Berechnen Sie die Abgaszusammensetzung in kmol/kg Öl. Berechnen Sie den Massenstrom der trockenen Abgase
Ṁtr.Abgase in g/s. ( Ṁtr.Abgase = 1.568 g/s)
c) Berechnen Sie den Partialdruck pH20 des Wassers im Abgas. ( pH2O = 0.112 bar)
d) Berechnen Sie den abgegebenen Wärmestrom Q̇. (Q̇ = −3.96 kW)
Stoffwerte:
Öl: Trockenes Abgas:
• Massenanteile: c = 0.87, h = 0.13 • Molmasse: M tr.Abgas = 30.3 kg/kmol
• unterer Heizwert bei t 0 = 0 °C: ∆hu = 43 MJ/kg • spezifische Wärmekapazität: c p,tr. Abgas = 990 J/(kgK)
• spezifische Wärmekapazität: c p,Öl = 1950 J/(kgK) Wasser: M H2 O = 18.01 kg/kmol
Aufgabe 8
Ein fester Brennstoff (B) der unten angegebenen Zusammensetzung (in Massenanteilen) wird isobar mit Luft ( yO2 = 0.21,
yN2 = 0.79) bei λ = 1.1 vollständig verbrannt. Luft und Abgase können als ideale Gase angesehen werden.
a) Berechnen Sie die Abgasmengen Ni00 /MB aller Komponenten i in kmol/kg B. (NCO2 00
/MB = 0.070 83 kmol/kg B)
b) Wie groß ist der obere Heizwert ∆ho,t0 =0 °C des Brennstoffs? Begründen Sie Ihre Antwort.
c) Wie hoch ist die theoretische Verbrennungstemperatur, wenn ṀB = 1 kg/s Brennstoff der Temperatur t B = 15 °C
mit Luft der Temperatur t L = 10 °C verbrannt werden? ( t th,A = 2777 °C)
Stoffwerte
• Brennstoff: c = 0.85, s = 0.1, o = 0.05, cB = 3.0 kJ/(kgK), ∆hu,t 0 =0 °C = 33000 kJ/kg
• Luft: c p,L = 1.0 kJ/(kgK)
• Abgas: c p,tr.A = 1.0 kJ/(kgK)
• M O2 = 32 kg/kmol , M N2 = 28 kg/kmol , M CO2 = 44 kg/kmol , M SO2 = 64 kg/kmol
Aufgabe 9
In einem Notstromaggregat wird ein Generator von einem Verbrennungsmotor angetrieben. Als Brennstoff (B) für den
Verbrennungsmotor wird Erdgas (Zusammensetzung: 70 Vol.% Methan (CH4 ), 20 Vol.% Ethan (C2 H6 ), 5 Vol.% Kohlen-
dioxid (CO2 ) und 5 Vol.% Stickstoff (N2 )) verwendet. An einem nebligen Morgen wird das Notstromaggregat gestartet.
Dabei saugt der Motor feuchte Luft vom Zustand 1 ( t 1 = 10 °C, p1 = 1 bar, X 1 = 0.01) für die Verbrennung an. Im
Ansaugrohr des Motors erwärmt sich die Luft bis zum Eintritt in den Brennraum auf t 2 = 20 °C. Ebenfalls mit einer Tem-
peratur von 20 °C wird das Erdgas dem Brennraum zugeführt. Die Verbrennung erfolgt isobar mit einem Luftverhältnis
von λ = 1.1. Das Abgas verlässt den Brennraum mit einer Temperatur von t 3 = 200 °C.
a) Berechnen Sie die Menge trockener Luft (der Zusammensetzung yO2 = 0.21 , yN2 = 0.79 ), die dem Motor pro
Kilomol Erdgas zugeführt wird. ( L = 11 kmol L/kmol B)
b) Berechnen Sie die Menge des feuchten Abgases (f.A.) bezogen auf ein kmol Erdgas.
00
(Nf.A. /NB = 12.28 kmol f.A./kmol B)
c) Berechnen Sie die vom Brennstoff-Luftgemisch abgegebene Wärmemenge bezogen auf ein kmol Erdgas.
(Q/NB = −882.97 MJ/kmol B)
Stoffwerte:
• unterer molarer Heizwert: ∆H u,Erdgas (1 bar, 20 °C) = 950 MJ/kmol
• Molmassen: M tr.Luft = 28.95 kg/kmol, M Wasser = 18 kg/kmol
• molare Wärmekapazitäten: C p,O2 = 29.2 kJ/(kmolK), C p,N2 = 28.8 kJ/(kmolK), C p,CO2 = 37.2 kJ/(kmolK)
• Dampfenthalpien: hD (0.0158 bar, 20 °C) = 2537 kJ/kg, hD (0.18 bar, 200 °C) = 2867 kJ/kg