100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
Statistik für Wirtschaftsinformatiker 6,49 €
In den Einkaufswagen

Notizen

Statistik für Wirtschaftsinformatiker

 6 mal angesehen  0 mal verkauft

Statistik für Wirtschaftsinformatiker

vorschau 3 aus 30   Seiten

  • 4. juni 2022
  • 30
  • 2021/2022
  • Notizen
  • Gerhard müller
  • Alle klassen
Alle Dokumente für dieses Fach (6)
avatar-seller
valeriyamakarova
Statistik / Teil V: Prognoseverfahren 159
10. Zeitreihenanalyse


10. Zeitreihenanalyse

Ist im Gegensatz zur Regressionsrechnung die Gesamtheit der Einflussgrößen oder die Art
ihres Einflusses nicht bekannt oder die mathematische Beschreibung nur schwer möglich, wird
nur das zeitliche Verhalten der beobachteten Größe selbst untersucht. Die Zeit tritt als Ursache
an die Stelle der Gesamtheit der tatsächlichen Einflussfaktoren.

Um das Verhalten eines Merkmals im Zeitablauf zu analysieren, werden die Merkmalsaus-
prägungen für aufeinander folgende Zeitpunkte oder Zeitintervalle erhoben. Eine solche Reihe
von Beobachtungswerten heißt Zeitreihe. Für die Zeitreihenanalyse lassen sich dann folgende
Ziele und Aufgaben ableiten:

• Identifikation der Gesetzmäßigkeiten einer Zeitreihe
• Vergleich verschiedener Zeitreihen
• Schätzung von unbekannten Zeitreihenwerten innerhalb des Beobachtungsintervalls
(Interpolation)
• Schätzung von Zeitreihenwerten außerhalb des Beobachtungsintervalls
(Extrapolation, Prognose)




10.1. Komponenten einer Zeitreihe und ihre Modellierung

Mögliche Einflussfaktoren bzw. Komponenten einer Zeitreihe lassen sich meist schon mit
Blick auf ihren grafischen Verlauf erkennen. Hierzu sind für die bereits bekannte Jugend-
herberge in der nachfolgenden Abbildung deren Quartalszahlen an Übernachtungen von
2015 bis Ende 2019 dargestellt.

,Statistik / Teil V: Prognoseverfahren 160
10. Zeitreihenanalyse


Die gestrichelte Linie verdeutlicht, dass die durchschnittlichen Übernachtungszahlen in dem
betrachteten Zeitraum ab März 2015 leicht angestiegen sind, allerdings sind in den je-
weiligen Quartalen auch deutliche Abweichungen zu erkennen. So liegen die Höchstwerte
innerhalb eines Jahres im zweiten oder dritten Quartal und die Tiefstpunkte immer im ersten
Quartal.

Aus diesen ersten Überlegungen lassen sich bereits die zentralen Bewegungskomponenten
einer Zeitreihe ableiten. Dabei werden unterschieden:

• eine Trend-Komponente Tt,
= Erfassung einer langfristigen Grundrichtung der zeitlichen Entwicklung.

• eine zyklische Komponente bzw. Konjunkturkomponente Kt,
= Erfassung von mittelfristigen, sich periodisch wiederholenden Einflüssen; insbesondere
konjunkturelle Schwankungen, die mit einer mehrjährigen, aber nicht völlig konstant
bleibenden Periode den Trend überlagern.

• eine saisonale Komponente St,
= Erfassung jahreszeitlicher Ereignisse, die mit einer konstanten jährlichen Periode
auftreten und von dem Trend und der zyklischen Komponente überlagert sind.

• eine zufällige Restkomponente Rt,
= Erfassung aller Schwankungen der beobachteten Zeitreihe, die nicht durch die drei
systematischen Komponenten abgedeckt und gedeutet worden sind; bei diesen zufälligen
Schwankungen wird davon ausgegangen, dass ihr Mittelwert im Zeitablauf Null ist.

Da eine klare Trennung von Trend und zyklischer Komponente meist nicht möglich ist, werden
beide oft zur glatten Komponente Gt zusammengefasst.

Die Zeitreihenwerte lassen sich dann entweder über eine additive Verknüpfung der Bewe-
gungskomponenten

yt = Gt + St + Rt (= additives Modell)

oder über eine multiplikative Verknüpfung

yt = Gt ∙ St ∙ Rt (= multiplikatives Modell)

beschreiben.

Das multiplikative Modell eignet sich vor allem zur Analyse von Zeitreihen mit einer im Zeit-
ablauf kontinuierlich steigenden oder fallenden Amplitude. In allen anderen Fällen ist eine
additive Verknüpfung der Komponenten vorzuziehen.

Während im obigen Schaubild die Amplitude in den ersten drei Jahren annähernd konstant
bleibt, nimmt sie im vierten Jahr (2018) zu, um dann 2019 wieder auf das vorherige Niveau
zurück zu fallen. In dem Beispiel zu den Übernachtungszahlen ist folglich von einem addi-
tiven Modell auszugehen.

, Statistik / Teil V: Prognoseverfahren 161
10. Zeitreihenanalyse


Gerade für ökonomische Zeitreihen ist dieser Verlauf nicht untypisch. In der Regel zeigt sich
also eine relativ konstante Schwingungsbreite zwischen den Jahres-Hoch- und Tiefpunkten
der Zeitreihe, die dann nur temporär von steigenden oder fallenden Amplituden abgelöst
werden. Kontinuierlich fallende oder steigende Amplituden, die für ein Zeitreihenmodell mit
multiplikativ verknüpften Komponenten sprechend würden, sind dagegen äußerst selten. Es
soll daher im Folgenden nur auf additive Modelle näher eingegangen werden.




8.2. Ermittlung der glatten Komponente

Die glatte Komponente gibt die Grundrichtung einer Zeitreihe vor und hat damit zentrale
Bedeutung. Dazu wird nachfolgend ein funktionsspezifischer Ansatz nach der aus Kapitel 9
bekannten Methode der kleinsten Quadrate, die Methode gleitender Durchschnitte sowie
das Verfahren der exponentiellen Glättung beschrieben.


Methode gleitender Durchschnitte

Um die glatte Komponente einer Zeitreihe herauszufiltern, müssen die saisonalen und die
irregulären Schwankungen ausgeschaltet werden. Saisonschwankungen haben die kon-
stante Periode eines Jahres und gleichen sich in ihrer Wirkung innerhalb eines Jahres
gegenseitig aus. Folglich lassen sich die Saisoneinflüsse dadurch neutralisieren, dass aus
allen Zeitreihenwerten einer Periode ein arithmetischer Durchschnitt berechnet wird. Gleich-
zeitig wird hierdurch auch die Restkomponente eliminiert. Mit der fortlaufenden Berechnung
von Durchschnitten lassen sich also 'zwei Fliegen mit einer Klappe schlagen', durch das
Ausschalten von Saison- und Restkomponente entspricht der Durchschnittswert dem
Trendwert.


Gleitende Durchschnitte GD

Gleitende Durchschnitte GD der Ordnung d werden als arithmetisches Mittel fortlaufend aus d
benachbarten Zeitreihenwerten berechnet und dem mittleren der bei der Durchschnittsbildung be-
rücksichtigten Zeitpunkte t zugeordnet. Dabei muss zwischen Durchschnitten ungerader Ordnung
mit d = 3, 5, 7, …

1 i d-1
GDt (d) =⋅ ∑ y t +h mit i =
d h= −i 2

und Durchschnitten gerader Ordnung mit d = 2, 4, 6, …

1 y i−1
y  d
GDt (d) =⋅  t −i + ∑ y t +h + t +i  mit i =
d  2 h=−i+1 2  2

unterschieden werden.

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer valeriyamakarova. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für 6,49 €. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 15 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf
6,49 €
  • (0)
In den Einkaufswagen
Hinzugefügt