TU Dresden · Fakultät Mathematik · Institut für Numerische Mathematik 1
Prof. Dr. A. Schwartz Institut für Numerische Mathematik
Dr. M. Herrich SS 2022
Übungen zur Vorlesung Spezielle Kapitel der Mathematik
11. Übung, 20.06.–24.06.2022
Aufgabe 2 (Exponentialverteilte Zufallsgrößen)
Die Zerfallszeit T für ein Atom des radioaktiven Polonium-Isotops 210 Po ist eine exponentialverteilte
Zufallsgröße. Bestimmen Sie mittels der Halbwertszeit, die für dieses radioaktive Element 140 Tage
beträgt,
(a) den Parameter λ der Exponentialverteilung,
(b) die Zeitdauer t0 , in der mit einer Wahrscheinlichkeit von 95% ein Zerfall erfolgt.
Bemerkung: Unter der Halbwertszeit versteht man diejenige Zeit, in deren Verlauf die Wahrschein-
lichkeit eines Zerfalls gleich 21 ist.
Lösung: Die Zerfallszeit T (in Tagen) ist laut Aufgabenstellung exponentialverteilt mit einem noch
unbekannten Parameter λ. Insbesondere handelt es sich bei T also um eine stetige Zufallsgröße. Die
Dichtefunktion von T ist gegeben durch
0 für t < 0,
fT (t) = −λt
λe für t ≥ 0.
Die Vorschrift der zugehörigen Verteilungsfunktion F lautet
0 für b < 0,
FT (b) =
1 − e−λb für b ≥ 0,
siehe Folie 19 im Skript der 10. Vorlesungswoche. In unserem Beispiel stehen dabei t in der Vor-
schrift der Dichtefunktion bzw. b in der Vorschrift der Verteilungsfunktion für die Zeit in Tagen.
Der Zusammenhang zwischen Funktionswerten der Verteilungsfunktion und Wahrscheinlichkeiten
von Ereignissen im Zusammenhang mit der Zufallsgröße T ist bekanntlich gegeben durch
P (T ≤ b) = P (T < b) = FT (b),
wobei für erstere Gleichheit zu beachten ist, dass T eine stetige Zufallsgröße ist. Das heißt, die
Wahrscheinlichkeit dafür, dass ein Zerfall in höchstens b Tagen erfolgt, ist gleich FT (b).
(a) Die Halbwertszeit beträgt 140 Tage, das heißt, die Wahrscheinlichkeit dafür, dass in 140 Tagen
(oder weniger) ein Zerfall erfolgt, ist gleich 21 . Es gilt also
1 1
P (T ≤ 140) = ⇔ FT (140) = 1 − e−140λ = .
2 2
Durch Umstellen erhalten wir den gesuchten Wert λ:
1 1
−140λ = ln ⇒ λ= ln(2) ≈ 0,004951.
2 140
(b) Gesucht ist t0 so, dass gilt:
P (T ≤ t0 ) = 0,95 ⇔ FT (t0 ) = 1 − e−λt0 = 0,95.
Durch Umstellen und Einsetzen des in (a) erhaltenen λ-Wertes erhalten wir t0 :
e−λt0 = 0,05 ⇒ −λt0 = ln(0,05)
1 140
⇒ t0 = − ln(0,05) = − ln(0,05) ≈ 605
λ ln(2)
(Angabe in Tagen).
Prof. Dr. A. Schwartz Institut für Numerische Mathematik
Dr. M. Herrich SS 2022
Übungen zur Vorlesung Spezielle Kapitel der Mathematik
11. Übung, 20.06.–24.06.2022
Aufgabe 2 (Exponentialverteilte Zufallsgrößen)
Die Zerfallszeit T für ein Atom des radioaktiven Polonium-Isotops 210 Po ist eine exponentialverteilte
Zufallsgröße. Bestimmen Sie mittels der Halbwertszeit, die für dieses radioaktive Element 140 Tage
beträgt,
(a) den Parameter λ der Exponentialverteilung,
(b) die Zeitdauer t0 , in der mit einer Wahrscheinlichkeit von 95% ein Zerfall erfolgt.
Bemerkung: Unter der Halbwertszeit versteht man diejenige Zeit, in deren Verlauf die Wahrschein-
lichkeit eines Zerfalls gleich 21 ist.
Lösung: Die Zerfallszeit T (in Tagen) ist laut Aufgabenstellung exponentialverteilt mit einem noch
unbekannten Parameter λ. Insbesondere handelt es sich bei T also um eine stetige Zufallsgröße. Die
Dichtefunktion von T ist gegeben durch
0 für t < 0,
fT (t) = −λt
λe für t ≥ 0.
Die Vorschrift der zugehörigen Verteilungsfunktion F lautet
0 für b < 0,
FT (b) =
1 − e−λb für b ≥ 0,
siehe Folie 19 im Skript der 10. Vorlesungswoche. In unserem Beispiel stehen dabei t in der Vor-
schrift der Dichtefunktion bzw. b in der Vorschrift der Verteilungsfunktion für die Zeit in Tagen.
Der Zusammenhang zwischen Funktionswerten der Verteilungsfunktion und Wahrscheinlichkeiten
von Ereignissen im Zusammenhang mit der Zufallsgröße T ist bekanntlich gegeben durch
P (T ≤ b) = P (T < b) = FT (b),
wobei für erstere Gleichheit zu beachten ist, dass T eine stetige Zufallsgröße ist. Das heißt, die
Wahrscheinlichkeit dafür, dass ein Zerfall in höchstens b Tagen erfolgt, ist gleich FT (b).
(a) Die Halbwertszeit beträgt 140 Tage, das heißt, die Wahrscheinlichkeit dafür, dass in 140 Tagen
(oder weniger) ein Zerfall erfolgt, ist gleich 21 . Es gilt also
1 1
P (T ≤ 140) = ⇔ FT (140) = 1 − e−140λ = .
2 2
Durch Umstellen erhalten wir den gesuchten Wert λ:
1 1
−140λ = ln ⇒ λ= ln(2) ≈ 0,004951.
2 140
(b) Gesucht ist t0 so, dass gilt:
P (T ≤ t0 ) = 0,95 ⇔ FT (t0 ) = 1 − e−λt0 = 0,95.
Durch Umstellen und Einsetzen des in (a) erhaltenen λ-Wertes erhalten wir t0 :
e−λt0 = 0,05 ⇒ −λt0 = ln(0,05)
1 140
⇒ t0 = − ln(0,05) = − ln(0,05) ≈ 605
λ ln(2)
(Angabe in Tagen).