100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
Summary Neuroimaging: Functional MRI - Research Master - Maastricht University 5,79 €   In den Einkaufswagen

Zusammenfassung

Summary Neuroimaging: Functional MRI - Research Master - Maastricht University

 75 mal angesehen  5 mal verkauft
  • Kurs
  • Hochschule

This includes a concise summary of all 9 Tasks. I did not summarise each paper individually as they more or less all say the same. The summary is less detailed than my other summaries but the exam is not too hard and the necessary information is in there. The exam was at the level of this summary. ...

[ Mehr anzeigen ]

vorschau 4 aus 32   Seiten

  • 4. januar 2023
  • 32
  • 2022/2023
  • Zusammenfassung
avatar-seller
Neuroimaging: Functional Magnetic Resonance Imaging
Task 1: The physicist in you
1. The patient is placed in a magnet
Protons have a positive electrical charge, which
is constantly moving, because the protons possess a spin.
→ This moving electrical charge is an electrical current
which always induces a magnetic field.
→ Thus, every proton has its own magnetic field and it
can be seen as a little bar magnet.

→ Normally, protons in our bodies are aligned randomly
→ When we now put a patient in the scanner, the
protons align with the external magnetic field.
→ They do this in two ways: parallel and anti-parallel.
The state that needs less energy (parallel) is preferred,
so there are few more protons aligned parallel than
antiparallel. The difference is small but present and
determines the net-magnetization vector (yellow arrow)

Precession: Protons are not just lying there but instead they move around in a certain way,
called precession (shown on the left in the blue box)
Precession frequency: how many times the protons precess per second
→ not constant, depends on the strength of the magnetic field: the stronger the faster
→ can be precisely calculated by the Larmor equation:


The equation states that the precession frequency becomes higher when the magnetic field
strength increases. The exact relationship is determined by the gyro-magnetic ratio, which is
different for different atoms (so constant for hydrogen, doesn’t change with changes in
magnetic field strength). Can fMRI be done with other atoms than hydrogen? In theory yes

,In the coordinate system, the vectors depict the protons and the z-axis the direction of the
magnetic field (the net-magnetization vector):
• Antiparallel and parallel protons can cancel each others magnetic forces out
• As there are more parallel protons, some proton’s forces aren’t cancelled out:
• All of these protons add up their forces in the direction of the external magnetic
field, so that the patient in the magnet has his own magnetic field (yellow arrow)
• This direction is longitudinal to the external field of the MR machine's magnet.
• Because it is longitudinal it cannot be measured directly (as it is in the same
direction/parallel to the external magnetic field), which is why we need
magnetization transversal to the external magnetic field

2. A radio wave is sent in
As the longitudinal magnetization cannot be measured, a radio frequency pulse is added
into the patient, to disturbs the protons, it exchanges energy with them
Resonance: Energy exchange is only possible if the protons and the RF pulse have the same
frequency (they are in resonance). This is done specifically at the Larmor frequency: the
Larmor equation gives us the needed frequency of the RF pulse
The radiowave has two effects on the protons:
1) It lifts some protons to a higher level of energy (protons pick energy up)
→ More protons flip to the energy costly anti-parallel position
→ results in decreasing the longitudinal magnetization
2) it causes the protons to precess in phase
→ this creates a new magnetization transversal to the external magnetic field
→ can now be measured: magnetic field precesses → induces an electrical current → this
current has a frequency that can be measured, this is our MR signal!

If the number of parallel protons equals the number of antiparallel protons, longitudinal
magnetization disappears, and there is only transversal magnetization (due to phase
coherence). The net magnetic vector (yellow arrow) seems to have been "tilted" 90° to the
side. The corresponding RF pulse is thus also called a 90° pulse.

,3. The radio wave is turned off
As the radio wave is turned off, the protons fall back into their original position:
Longitudinal relaxation time (T1): the time it takes for the 63% of the longitudinal
magnetization to increase and be fully back again (graph on the left of the green box)
(protons give energy back to their surroundings), 300-2000ms. It is a measure of the time
taken for spinning protons to realign with the external magnetic field.
• T1 varies with the magnetic field strength and is longer in stronger magnetic fields
because in a stronger magnetic field the protons precess faster.
• when they precess faster, they have more problems handing down their energy to a
lattice with more slowly fluctuating magnetic fields.
• fatty tissue has a shorter T1 as water because the carbon bonds at the ends of the
fatty acids have frequencies near the Larmor frequency, thus resulting in effective
energy transfer.
Transversal relaxation time (T2): the time it takes for 63% of the transversal magnetization
to decrease and fully disappear (graph on the right of the green box), 30-150ms. It is a
measure of the time taken for spinning protons to lose phase coherence among the nuclei
spinning perpendicular to the main field
• assumes homogeneity of the external magnetic field and local magnetic fields (small
imperfections)
• water molecules move around very fast → their magnetic fields fluctuate fast and
cancel each other out → no big difference in internal magnetic fields → protons stay
longer in phase → T2 is longer
• with larger molecules, there are bigger variations in the local magnetic fields:
move slower → no cancelling out → larger difference in internal magnetic fields →
larger differences in precession frequencies → protons get out of phase quicker
→ T2 is shorter

Transverse magnetization decays much faster than would be predicted by natural atomic
and molecular mechanisms: this rate is called the T2* effects:
• In an ideal homogeneous magnetic field, the transverse relaxation follows an
exponential signal decay (free-induction decay, FID), this is T2
• However, in physiological tissue the transverse relaxation is more rapid because of
local field inhomogeneities including those caused by the tissue itself. When
inhomogeneities are present, the decay constant is called T2*
• T2* can be considered an "observed" or "effective" T2, whereas the first T2 can be
considered the "natural" or "true" T2 of the tissue being imaged.
• T2* is always less than or equal to T2.

Free Induction Decay: The increasing of longitudinal and decreasing of
transversal magnetization looks like a spiraling of the net magnetic
vector. This induces an electrical current.
→ This however only applies to a 90-degree RF pulse
→ the signal decays very rapidly and requires a very fast scanner
→ T2* effects that come with the local homogeneities of the magnetic
field

, • The time of T1 and T2 differs between white and grey matter and cerebrospinal fluid. T1
and T2 take longer for watery tissue, and shorter for fatty tissue. By recording the
contrast at the moment of the maximal difference of T1 and T2 you can measure what
matter the tissue has.
• In total, T1 is longer than T2




Watch: https://www.youtube.com/watch?v=jLnuPKhKXVM
https://www.youtube.com/watch?v=chsP2mAng3o

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer fuzzyface. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für 5,79 €. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 14 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf
5,79 €  5x  verkauft
  • (0)
  Kaufen