100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
Zusammenfassung Modellorganismen Klausurfragen + Lösungen zum Teil Mikrobiologie und Botanik 3,49 €   In den Einkaufswagen

Zusammenfassung

Zusammenfassung Modellorganismen Klausurfragen + Lösungen zum Teil Mikrobiologie und Botanik

 12 mal angesehen  0 mal verkauft

Modellorganismen Klausurfragen plus Lösungen zum Teil Mikrobiologie und Botanik. KIT, 5. Semester, Allgemeine Biologie Bachelor

vorschau 3 aus 29   Seiten

  • 1. märz 2023
  • 29
  • 2021/2022
  • Zusammenfassung
Alle Dokumente für dieses Fach (3)
avatar-seller
leonielazarogarcia
Fragen zu 1. Einführung:

Welche Kriterien für Modellorganismen wichtig sind:
• Lassen sich gut im Labor anziehen und vermehren
• Schnelle Fortpflanzung
• Lassen sich gut beobachten
• Sind transformierbar (Genfkt-Untersuchungen möglich)
• Sind genetisch gut charakterisiert, Mutantenkollektionen
• Sind pyhsiologisch gut definiert
• Werden von vielen untersucht (Network payoff)
o Hoher Grad an Austauschbarkeit von Daten zwischen Wissenschaftlern
o Datenbanken, Mutantenkollektionen

Für die behandelten Modellorganismen je ein Phänomen, wo er eingesetzt wurde:
• Prokaroyten: Methodisch, Genregulation, Signalwege, Chemotaxis, Evolution
• Archaea: Methodisch und technisch, Modell für Lebensentstehung
• Aspergillus: Biotechnologish, Zellpolarität, Cytoskelett
• Hefe: Biotechnologisch, Zellzyklus, Genregulation bei Eukaryoten
• Moose: Pflanzliche Entwicklung, Grüne Biotech., funktionelle Genomik, Landpflanzenevolution
• Reis: Kulturpflanzen, Grüne Gentechnik, smart breeding, Ökonomie
• Arabidposis: Funktionelle Genomik der Pflanzen, Landwirtschaft
• Pflanzliche Wirt-Parasiten-Systeme: Landwirtschaft und Ökologie, Immunität
• Drosophila: Genetik, Embryonalentwicklung, Musterbilung, Symmetriebruch, EvoDevo
• Zebrafisch: Vertebraten-Entwicklung, Neuronale Netzwerke, Verhalten, Evolution
• Frosch: Embryologie, Induktion, Achensbildung, Zellzyklus, Wnt-Signalweg, Gastrulation
• Maus: Stammzellenforschung, Krankheiten des Menschen, Genfunktion bei Säugern
• Stammzellen: Zelluläre Funktion menschlicher Gene, Signalwege, Regeneration

Die drei Stachowiakschen Kriterien für ein Modell

1) Abbildung: Modell ist immer ein Abbildung von etwas
2) Verkürzung: ein Modell erfasst nur die Attribute des Originals, die relevant erscheinen
3) Pragmatismus: ein Modell ersetzt das Original in Bezug auf etwas, für einen Zweck

zuordnen können ob ein Forschungsprojekt forward oder reverse genetics ist
• Forward genetics: man hat den Phänotyp (Mutante) und sucht das zugehörige Gen
• Reverse genetics: man hat das Gen und sucht den Phänotyp

an einem Beispiel Grenzen der Übertragbarkeit erläutern können
1. Mechanismen + Moleküle werden oft zwischen Organismen übertragen -> geht nur wenns passt
• Führt nur zu sinnvollen Aussagen, wenn es jeweilige Fkt im Zielorganismus überhaupt gibt
• Osmosensor aus Pflanzen in Hefe sinnvoll, BL-Rezeptor nicht !
o Pflanze untersucht -> wie wird Trockenheit wahrgenommen?
o Arabidopsis nimmt Trockenheit wahr über Osmosensor -> kann Druck auf Zellwand testen ->
osmotische Wahrnehmung untersucht in Hefe
o Hefemutante mit def. osmot. Wahrnehmung -> Transformation mit cDNA Bank aus Arabidopsis ->
Komplementierung um Hefemutante wieder fktfähig zu machen -> Sequenzierung des
komplementierenden Gens -> Osmorezeptor von Pflanze wurde gefunden
o Bei BL-Rezeptor so nicht durchführbar -> Hefe reagiert nicht auf Licht-> hat diesen Rezeptor nicht

,2. Ökologische Nische: Übertragbarkeit -> abhängig von Anpassung an ökol. Nische + auch abhängig von der
damit einhergehenden spez. Strategie, die für Anpassung nötig ist
• Alle Organismen sind an eine ganz bestimmte ökol. Nische angepasst -> auch Modellorganismen außerhalb
des Labors entstanden + verfolgen ganz spez. Strategie
• Bei Übertragung auf andere Organismen muss man daher „modellhaft“ von „Anpassung an jew. Nische“
trennen
• Beispiel Pflanzenreich:
Arabidopsis thaliana = wichtigster Modellorganismus der Pflanzenbiologe -> nutzt eine Therophyten-
Strategie (schnelle Entwicklung + Überdauerung im Samenstadium) -> bei Übertragungen auf andere
Pflanzen zu bedenken -> Kann man nicht für alle Blütenpflanzen nehmen -> andere Pflanze, andere Nische,
andere Strategie -> Übertragungsfehler

für ein bestimmtes Phänomen einen Modellorganismus benennen können, an dem man das untersuchen kann

Stammzellteilung an Arabidopsis:
• Stammzellen in der Zentralzone verbrauchen sich bei der Bildung von Primordien, werden aber immer
wieder nachgeliefert
o Primordien = Pflanzengewebe, aus dem sich ein Organ -> Blatt, Wurzel oder Blüte entwickelt
• Suche nach Mutanten, wo diese Balance gestört ist:
o Wuschel: Stammzellen brauchen sich auf (Meristem endlich)
o Clavata 3: zu starke Nachlieferung von Stammzellen (Riesenmeristem)
• Wuschel entsteht in Stammzellen + aktiviert Stammzell-Schicksal
o Wuschel = Aktivator -> aktiviert Stammzellbildung
• Clavata 3 entsteht in den Zellen oberhalb der Stammzellen und wandert in diese ein -> ist Ligand eines
Rezeptors (clavata 1) -> durch Bindung wird MAPK-Weg aktiviert -> dieser reprimiert das Wuschel Gen und
damit das Stammzellschicksal
o Clavata = Inhibitor -> hemmt Stammzellbildung durch Aktivierung des MAPK-Signalwegs
• Ein Signal aus den schon differenzierten Zellen liefert eine Rückkopplung auf die Balance zwischen Wuschel
und Clavata, so dass immer die richtige Menge Stammzellen erhalten werden.
o Wenn Bereich oberhalb der Stammzellen zu Primordien differenziert -> wird MAPK-Weg nicht
aktiviert -> Stammzellen teilen sich -> Balance ist wichtig

, Fragen zu 2. Hefe:
wie der Lebenszyklus von Saccharomyces cerevisiae aussieht, welche Stadien haploid und diploid sind und wie
Sporen gebildet werden
• Besitzen 2 Paarungsformen: a- und alpha- haploide Zellen (Hefen)
• Diese beiden kreuzen sich + fusionieren-> bilden a/alpha-diploide Zelle = diploide Hefe
• a/alpha-diploide Zelle (Zygote) kann sich asexuell teilen -> Sprossung -> a/alpha-diploide Sporen entstehen
• oder sexuell vermehren -> Sporulation -> Ascusbildung -> hier wird Meiose durchlaufen -> aus diploider
Hefe (a/alpha diploider Zelle) entstehen 4 haploide Sporen -> 2 a + 2 alpha
• Sporen keimen wieder aus zu den haploiden Hefen -> diese können sich auch wieder asexuell teilen durch
Sprossung
• Oder Haploide Hefe von unt. Mating-types findet sich wieder zsm zu diploider Hefe und durchlaufen
Prozess erneut -> Mating-Zsmsetzung wird gesteuert durch Pheromone a- und alpha-Faktor -> wachsen
durch Pheromon-Gradient aufeinander zu + fusionieren dann
• 1 kompletter Zellzyklus dauert 90 Minuten


mit welchen Methoden Hefen gentechnisch verändert werden können
1. Standard Mutagenese:
• Chemikalien, Bestrahlung -> zufällige somatische Mutation (Mutation schwer zu finden, da vlt. 100
Mutationen über EMS stattfinden -> Sequenzierung)
• Transposons -> zufällige somatische Mutation (Insertionspunkt sehr schnell gefunden -> über PCR
Transposon-Ränder amplifizieren -> erhält Gen mit Transposon-Insertion -> also man weiß direkt in
welches Gen es gesprungen ist)
2.Transgenese:
• Integrative Plasmide -> Insertion über HR
• Replikative Plasmide -> autonome Replikation
• Yeast artificial chromosome (YAC) -> chromosomale Segregation
3. Zielgerichteter Genersatz:
• Genersatz -> Austausch der WT-Kopie mit Transgen über HR


welche genetische Screens für Hefen etabliert wurden (z.B. Supressor-Screens, synthetisch lethale Mutanten)
• Temperatur sensitive Mutanten
• Suppressor Mutanten
• Synthetische Letalität
• Genom-weite Analyse
• Yeast Two-Hybrid Screen
• Vergleichende Genomik


die Vorteile eines haploiden, einzelligen Eukaryonten als Modellorganismus darstellen können
haploide Hefe ideal für Forward genetics: wenn Gen mutiert ist, sieht man das direkt am Phänotyp und kann
diesen untersuchen auf das zugehörige Gen -> bei diploid braucht man erst Rückkreuzung um Phänotyp zu
bekommen


erklären können, wie Hefemutanten komplementiert werden können
Komplementation mit Plasmid Library


die funktionellen Zusammenhänge zwischen synthetisch letalen Mutationen und Suppressor-Mutationen
herstellen können
Suppressor Mutanten und Synthetische Letalität bringen Gene in funktionellen Zsmhang -> kann Gene finden,
die in einem Zsmhang miteinander arbeiten

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer leonielazarogarcia. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für 3,49 €. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 14 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf
3,49 €
  • (0)
  Kaufen