Fragen zu 1. Einführung:
Welche Kriterien für Modellorganismen wichtig sind:
• Lassen sich gut im Labor anziehen und vermehren
• Schnelle Fortpflanzung
• Lassen sich gut beobachten
• Sind transformierbar (Genfkt-Untersuchungen möglich)
• Sind genetisch gut charakterisiert, Mutantenkollektionen
• Sind pyhsiologisch gut definiert
• Werden von vielen untersucht (Network payoff)
o Hoher Grad an Austauschbarkeit von Daten zwischen Wissenschaftlern
o Datenbanken, Mutantenkollektionen
Für die behandelten Modellorganismen je ein Phänomen, wo er eingesetzt wurde:
• Prokaroyten: Methodisch, Genregulation, Signalwege, Chemotaxis, Evolution
• Archaea: Methodisch und technisch, Modell für Lebensentstehung
• Aspergillus: Biotechnologish, Zellpolarität, Cytoskelett
• Hefe: Biotechnologisch, Zellzyklus, Genregulation bei Eukaryoten
• Moose: Pflanzliche Entwicklung, Grüne Biotech., funktionelle Genomik, Landpflanzenevolution
• Reis: Kulturpflanzen, Grüne Gentechnik, smart breeding, Ökonomie
• Arabidposis: Funktionelle Genomik der Pflanzen, Landwirtschaft
• Pflanzliche Wirt-Parasiten-Systeme: Landwirtschaft und Ökologie, Immunität
• Drosophila: Genetik, Embryonalentwicklung, Musterbilung, Symmetriebruch, EvoDevo
• Zebrafisch: Vertebraten-Entwicklung, Neuronale Netzwerke, Verhalten, Evolution
• Frosch: Embryologie, Induktion, Achensbildung, Zellzyklus, Wnt-Signalweg, Gastrulation
• Maus: Stammzellenforschung, Krankheiten des Menschen, Genfunktion bei Säugern
• Stammzellen: Zelluläre Funktion menschlicher Gene, Signalwege, Regeneration
Die drei Stachowiakschen Kriterien für ein Modell
1) Abbildung: Modell ist immer ein Abbildung von etwas
2) Verkürzung: ein Modell erfasst nur die Attribute des Originals, die relevant erscheinen
3) Pragmatismus: ein Modell ersetzt das Original in Bezug auf etwas, für einen Zweck
zuordnen können ob ein Forschungsprojekt forward oder reverse genetics ist
• Forward genetics: man hat den Phänotyp (Mutante) und sucht das zugehörige Gen
• Reverse genetics: man hat das Gen und sucht den Phänotyp
an einem Beispiel Grenzen der Übertragbarkeit erläutern können
1. Mechanismen + Moleküle werden oft zwischen Organismen übertragen -> geht nur wenns passt
• Führt nur zu sinnvollen Aussagen, wenn es jeweilige Fkt im Zielorganismus überhaupt gibt
• Osmosensor aus Pflanzen in Hefe sinnvoll, BL-Rezeptor nicht !
o Pflanze untersucht -> wie wird Trockenheit wahrgenommen?
o Arabidopsis nimmt Trockenheit wahr über Osmosensor -> kann Druck auf Zellwand testen ->
osmotische Wahrnehmung untersucht in Hefe
o Hefemutante mit def. osmot. Wahrnehmung -> Transformation mit cDNA Bank aus Arabidopsis ->
Komplementierung um Hefemutante wieder fktfähig zu machen -> Sequenzierung des
komplementierenden Gens -> Osmorezeptor von Pflanze wurde gefunden
o Bei BL-Rezeptor so nicht durchführbar -> Hefe reagiert nicht auf Licht-> hat diesen Rezeptor nicht
,2. Ökologische Nische: Übertragbarkeit -> abhängig von Anpassung an ökol. Nische + auch abhängig von der
damit einhergehenden spez. Strategie, die für Anpassung nötig ist
• Alle Organismen sind an eine ganz bestimmte ökol. Nische angepasst -> auch Modellorganismen außerhalb
des Labors entstanden + verfolgen ganz spez. Strategie
• Bei Übertragung auf andere Organismen muss man daher „modellhaft“ von „Anpassung an jew. Nische“
trennen
• Beispiel Pflanzenreich:
Arabidopsis thaliana = wichtigster Modellorganismus der Pflanzenbiologe -> nutzt eine Therophyten-
Strategie (schnelle Entwicklung + Überdauerung im Samenstadium) -> bei Übertragungen auf andere
Pflanzen zu bedenken -> Kann man nicht für alle Blütenpflanzen nehmen -> andere Pflanze, andere Nische,
andere Strategie -> Übertragungsfehler
für ein bestimmtes Phänomen einen Modellorganismus benennen können, an dem man das untersuchen kann
Stammzellteilung an Arabidopsis:
• Stammzellen in der Zentralzone verbrauchen sich bei der Bildung von Primordien, werden aber immer
wieder nachgeliefert
o Primordien = Pflanzengewebe, aus dem sich ein Organ -> Blatt, Wurzel oder Blüte entwickelt
• Suche nach Mutanten, wo diese Balance gestört ist:
o Wuschel: Stammzellen brauchen sich auf (Meristem endlich)
o Clavata 3: zu starke Nachlieferung von Stammzellen (Riesenmeristem)
• Wuschel entsteht in Stammzellen + aktiviert Stammzell-Schicksal
o Wuschel = Aktivator -> aktiviert Stammzellbildung
• Clavata 3 entsteht in den Zellen oberhalb der Stammzellen und wandert in diese ein -> ist Ligand eines
Rezeptors (clavata 1) -> durch Bindung wird MAPK-Weg aktiviert -> dieser reprimiert das Wuschel Gen und
damit das Stammzellschicksal
o Clavata = Inhibitor -> hemmt Stammzellbildung durch Aktivierung des MAPK-Signalwegs
• Ein Signal aus den schon differenzierten Zellen liefert eine Rückkopplung auf die Balance zwischen Wuschel
und Clavata, so dass immer die richtige Menge Stammzellen erhalten werden.
o Wenn Bereich oberhalb der Stammzellen zu Primordien differenziert -> wird MAPK-Weg nicht
aktiviert -> Stammzellen teilen sich -> Balance ist wichtig
, Fragen zu 2. Hefe:
wie der Lebenszyklus von Saccharomyces cerevisiae aussieht, welche Stadien haploid und diploid sind und wie
Sporen gebildet werden
• Besitzen 2 Paarungsformen: a- und alpha- haploide Zellen (Hefen)
• Diese beiden kreuzen sich + fusionieren-> bilden a/alpha-diploide Zelle = diploide Hefe
• a/alpha-diploide Zelle (Zygote) kann sich asexuell teilen -> Sprossung -> a/alpha-diploide Sporen entstehen
• oder sexuell vermehren -> Sporulation -> Ascusbildung -> hier wird Meiose durchlaufen -> aus diploider
Hefe (a/alpha diploider Zelle) entstehen 4 haploide Sporen -> 2 a + 2 alpha
• Sporen keimen wieder aus zu den haploiden Hefen -> diese können sich auch wieder asexuell teilen durch
Sprossung
• Oder Haploide Hefe von unt. Mating-types findet sich wieder zsm zu diploider Hefe und durchlaufen
Prozess erneut -> Mating-Zsmsetzung wird gesteuert durch Pheromone a- und alpha-Faktor -> wachsen
durch Pheromon-Gradient aufeinander zu + fusionieren dann
• 1 kompletter Zellzyklus dauert 90 Minuten
mit welchen Methoden Hefen gentechnisch verändert werden können
1. Standard Mutagenese:
• Chemikalien, Bestrahlung -> zufällige somatische Mutation (Mutation schwer zu finden, da vlt. 100
Mutationen über EMS stattfinden -> Sequenzierung)
• Transposons -> zufällige somatische Mutation (Insertionspunkt sehr schnell gefunden -> über PCR
Transposon-Ränder amplifizieren -> erhält Gen mit Transposon-Insertion -> also man weiß direkt in
welches Gen es gesprungen ist)
2.Transgenese:
• Integrative Plasmide -> Insertion über HR
• Replikative Plasmide -> autonome Replikation
• Yeast artificial chromosome (YAC) -> chromosomale Segregation
3. Zielgerichteter Genersatz:
• Genersatz -> Austausch der WT-Kopie mit Transgen über HR
welche genetische Screens für Hefen etabliert wurden (z.B. Supressor-Screens, synthetisch lethale Mutanten)
• Temperatur sensitive Mutanten
• Suppressor Mutanten
• Synthetische Letalität
• Genom-weite Analyse
• Yeast Two-Hybrid Screen
• Vergleichende Genomik
die Vorteile eines haploiden, einzelligen Eukaryonten als Modellorganismus darstellen können
haploide Hefe ideal für Forward genetics: wenn Gen mutiert ist, sieht man das direkt am Phänotyp und kann
diesen untersuchen auf das zugehörige Gen -> bei diploid braucht man erst Rückkreuzung um Phänotyp zu
bekommen
erklären können, wie Hefemutanten komplementiert werden können
Komplementation mit Plasmid Library
die funktionellen Zusammenhänge zwischen synthetisch letalen Mutationen und Suppressor-Mutationen
herstellen können
Suppressor Mutanten und Synthetische Letalität bringen Gene in funktionellen Zsmhang -> kann Gene finden,
die in einem Zsmhang miteinander arbeiten