Principles of Chemical Science_Hydrogen Atom Wave functions (Orbitals) - Lec6
5 mal angesehen 0 mal verkauft
Kurs
Chemistry
Hochschule
Chemistry
Lecture 6: Hydrogen Atom Wave functions (Orbitals)
1. Wavefunctions (Orbitals) for the Hydrogen Atom
2. Shape and Size of S and P Orbitals
3. Electron Spin and the Pauli Exclusion Principle
5.111 Lecture Summary #6 Monday, September 15, 2014
Readings for today: Section 1.9 – Atomic Orbitals. Section 1.10 – Electron Spin, Section 1.11 –
The Electronic Structure of Hydrogen. (Same sections in 4th ed.)
Read for Lecture #7: Section 1.12 – Orbital Energies (of many-electron atoms), Section 1.13 –
The Building-Up Principle. (Same sections in 4th and 5th ed.)
Topics: I. Wavefunctions (Orbitals) for the Hydrogen Atom
II. Shape and Size of S and P Orbitals
III. Electron Spin and the Pauli Exclusion Principle
I. WAVEFUNCTIONS (ORBITALS) FOR THE HYDROGEN ATOM
Solving the Schrödinger Equation provides values for En and Ψ(r,θ,φ).
A total of 3 quantum numbers are needed to describe a wavefunction in 3D.
1. n ≡ principal quantum number
n =
determines binding energy (energy level or shell)
2. l ≡ angular momentum quantum number
l =
l is related to n, determines angular momentum, describes subshell, shape of orbital
largest value of l = n – 1
3. m ≡ magnetic quantum number
m=
m is related to l, determines behavior in magnetic field, describes the specific orbital
To describe an orbital, we need to use all three quantum numbers:
Ψnlm(r,θ,φ)
The wavefunction describing the ground state is .
Using the terminology of chemists:
The Ψ100 orbital is instead called the orbital.
n designates the shell or energy level (1,2,3…)
l designates the subshell (shape of orbital) (s, p, d, f…)
m designates orbital orientation (specific orbital) (px, py, pz…)
=0⇒ orbital = 1 ⇒ orbital = 2 ⇒ orbital = 3 ⇒ orbital
for = 1: m = 0 is pz orbital, m = ±1 are the px and py orbitals
1
, State label wavefunction orbital H atom En H atom En[J]
n=1
=0 ψ100 –2.18 × 10–18J
m=0
n=2
=0 ψ200 -5.45 × 10–19J
m=0
n=2
=1 ψ211 -5.45 × 10–19J
m = +1
n=2
=1 210 ψ210 –RH/22 -5.45 × 10–19J
m=0
n= 2
=1 21-1 ψ21-1 –RH/22 -5.45 × 10–19J
m = -1
What is the corresponding orbital for a 5,1,0 state?
For a hydrogen atom, orbitals with the same n
value have the same energy: E = -RH/n2.
≡ having the same energy
For any principle quantum number, n, there are
degenerate orbitals in hydrogen (or any other 1 electron atom).
IN THEIR OWN WORDS
MIT graduate student Benjamin Ofori-Okai discusses how energy levels relate to
research in nanoscale MRI (magnetic resonance imaging), a technique that allows
3-D imaging of biological molecules, such as proteins, and viruses.
Image from "Behind the Scenes at MIT”. The Drennan Education Laboratory. Licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike License. 2
Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:
Garantiert gute Qualität durch Reviews
Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.
Schnell und einfach kaufen
Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.
Konzentration auf den Kern der Sache
Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.
Häufig gestellte Fragen
Was bekomme ich, wenn ich dieses Dokument kaufe?
Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.
Zufriedenheitsgarantie: Wie funktioniert das?
Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.
Wem kaufe ich diese Zusammenfassung ab?
Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer tandhiwahyono. Stuvia erleichtert die Zahlung an den Verkäufer.
Werde ich an ein Abonnement gebunden sein?
Nein, du kaufst diese Zusammenfassung nur für 2,47 €. Du bist nach deinem Kauf an nichts gebunden.