100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
Summary Grade 9.6!! 2.5 Psychometrics: Worked Example DETAILED Notes: answers + explanations FSWP2-052-A 7,99 €
In den Einkaufswagen

Zusammenfassung

Summary Grade 9.6!! 2.5 Psychometrics: Worked Example DETAILED Notes: answers + explanations FSWP2-052-A

 25 mal angesehen  1 mal verkauft
  • Kurs
  • Hochschule

Extensive notes on every worked example including correct answers as well as further explanations. Received grade 9.6 (average was 5.6)

vorschau 3 aus 29   Seiten

  • 5. oktober 2023
  • 29
  • 2022/2023
  • Zusammenfassung
avatar-seller
Wo r k ed ex a m p l e 1 :( H 3




I. Standardized scores:

The total number of correctanswers is transformed to a T-score which has mean 50 andSD 20.

Between which I-scores will approx. 95% the
of population scores lie?

In normal distribution, the lower bound is at -1.96 SDs /orappr.2 SDS) below the mean and the

upper bound is at1.96 SDS above the mean. Thus, the 95%CI lies between a T-score of

50 11.96 28) 50 11.96 * IM*SDnew
-
=
10.8
=

and
+




20) 89.2 (10
+ =
and 90) new




Describe the distribution ofscores:Descriptives -
Explore +
"correct scores" as dependent

skeweness and kurtosis values should be divided by their
·




SES, this value should be compared to -

2 and 2.


Ifthe value for skeweness is larger than 2:distribution

is
negatively skewed
↳ If
t he value for skeweness is larger than 2:distribution


is positively skewed
-



8,975 If kurtosis value greater than -


2:peak
o fdistribution is
1,569
+00 flate


greater than 2:Peakis too sharp
skeweness 1-8,975):slightly negatively skewed butnotsign.!

->
Kurtosis(1,69):peak is sharp butn ot significantly!
Kolmogorox-smirnox test:is significantK.001), indicating a deviation from a normal distr.

ibution! unsignificant:normal distribution
1K.S.- testis very conservative!


calculate
the z-scores and the T-scores:

The Z-score is a standard score with a mean of0 and SD of 1, which is calculated using Raw
scores, the mean of the raw scores and sp of the raw scores. The T-score is a converted

Standardized score, intended to have values thatppl find easier to understand.

The Escore is convertedinto a new standard score IT-score) by multiplying the E-score with

the SD ofthe new score (28) and adding the mean ofthe new score (50)
1) Analyze, Descriptive Statistics' Descriptives X Save standardized variables (E- scores)
2.) Transform, compute to variable T
calculate

T RND
=

120x2-20r 50) +




T- scores based on raw scores

2-scores wereonly standardized, notnormalized

, percentile
2.5,97.5

calculate
9 5% interval of the scores using percentile ranks

1.) Analyze' Descriptive Statistics Explore: T-variable in dependentl ist

statistics X percentiles, Paste

2)I n syntax, change: / Percentiles (5,10,25,50,75,90,95) HAVERAGE
intO

↑Percentile (2.5,97.5) HAVERAGE to gett h e lowest and highest2.5% percentiles
The answer differs from a) bc lower bound is 7 andupper is 92 (VS.10190)

because ata) we assumed a normal distribution, while we DON'T assume a normal distrib-

ution when we use percentiles.



percentile rankS
#


To make norm scores, one can use percentile ranks andp-values thatstem from the standard normal

distribution:

both percentile ranks and p-values indicate the yof ppl with an equal or lower score.

percentiles:calculated using all the raw scores wo
making assumption aboutdistribution ofthe scores


p-values:calculated using only mean and sp ofraw scores and
assuming a standard normal

IP-values:normality assumption
distribution

whether you use percentiles or p-values depends on whether you can assume a normal distribution in the


population or not


p-value preferred by it's less influenced by sample fluctuations

When no information known aboutpopulation and whether it's normally distributed, percentile ranks best to use

calculate p-value stemming from the standard normal distribution (z-scores):

1) Transform, compute to calculate percentile ranks using the standard normal distribution

CDF. NORMAL (Enr cor, 0,1
mean SD

CDF:cumulative distribution function;needed to calculate
the p-value for a certain z- score.

we know thata standardnormal distribution is a perfectly norm. dist. With mean 0 andSD1



calculate
percentives for the number corrects cores (raw scores
1) Transform, Rank cases Variables:h r cor ranktypes:X
fractional rankas


INTERPRETATION:

The percentile rank for a grade of 3.9 is 18.34 and p-value is 0,17



3
15.34% ofthe students hada grade of3.9 or lower.
don't differ a lot:so we can say the distribution
1
17%of the students had a grade of3.9 or lower.
t he
of
grades is fairly normal


use p-values when we can safely assume the distribution ofscores to be normal!

Ifnot:use smith that's not
assuming normal distribution (e..:percentile ranks)

, .Normalized scores
#




normalized T-score has
A to be caculated: 50
Meannew= sDrew=20
O RMALIZATION:
M


1) compute directpercentile ranks Rank Cases


2) convert the percentile ranks into standard scores (Nar_20r)
where the actual normalization oft he scores takes place be the standard scores are now no


longer based on the raw scores (like z-scores), buton percentile ranks!

3) compute convertedstandard score with mean 50 and SD 20 +



ur -cor + 20 50
+




Difference btw F-Scores from I . andIII.:

·The T-scores and F-norm scores differ on same Grade (e.9.:Grace 6:61/63). They differ because

the T-scores were notn ormalized, they were only standardizedIZ-Scores). The T-norm scores were

both standardized and normalized. raw scores, z-scores transformation


·F scores:transformations oft he z-scores (Standardized, notnormalized) - use raw scores


Why Iscores have same distribution ofthe raw scores (thus notnecessarily norm all
·

F-norm scores:transformation t he
of normalized scores. perientile+ z-scures transformation
-




·Standard scores calculated based on assump. of a normal distribution

the course coordinator shouldprefer the normalized scores to be sure thatthe assumption of a


normal distribution ofthe scores is met.

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer christinauhlenbruck. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für 7,99 €. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 14 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf
7,99 €  1x  verkauft
  • (0)
In den Einkaufswagen
Hinzugefügt