Meten en Diagnostiek 2 (P_BMETDIA_2)
Alle Dokumente für dieses Fach (26)
Verkäufer
Folgen
bernarditarichards
Deine Reviews
Inhaltsvorschau
Lecture 1. INTRODUCTION
● Psychometrics:assessing the attributes of psychologicaltests
○ Interindividual = compare the behavior of different people
○ Intraindividual = compare the behavior of the same person at different points in
time
● Criterion-referenced tests: compare each score withapredeterminedcut-off point
● Norm-referenced tests:compare each score with areferencesampleandnorm
● Path diagram
○ Latent variable (unobservable)
○ Items (observable)
○ Error (unobservable LV)
● Psychological theory
○ Decides what is relevant to be measured
○ Informs statistics: make “distributional assumptions” based on theory
● Statistics: analysis of individual differences
● Causality
○ Relative items:item directly and causally relatedto the LV
(correlated)
○ Formative items: items are not causally dependenton the
index variable - items scores determine the test score
● Properties of Numeral
○ Property of identity: differentiate between categoriesof people (mutuallyexclusive&exhaustive)
○ Property of order:indicate therankorderof peoplerelative to each other along asingledimension
(implies transitivity)
○ Property of quantity: adds information concerningamountto the numeral expressed in numerical counts
of units
■ Absolute zero:absence of the attribute
■ Relative zero:assignments of zero to an arbitraryvalue
● Measurement Levels
○ Nominal scale: Numbers are simply ways to codecategoricalinformation
■ Property of identity
○ Ordinal scale:Numbers assigned have meaning in thatthey demonstrate arank orderof the classes
■ Property of identity & order
○ Interval scale: Provides a rank order of objects wheredifferences in scale values expressdifferences in
amount
■ Property of identity + order + amount
■ Zero isrelative(not absolute)
○ Ratio scale: Property of identity + order + amount+absolute zero
,Lecture 2. LINEAR REGRESSION
● Linear regression = conditionalMEAN.
o Conditional mean:mean score on a variable given thescore on another variable.
● If we have Y= b0 + b1 * x → no te olvides que es la formula predicted value!! (y=ȳ).
o b0 : intercept/constant: predicted value ofywhenx= 0.
o b
1 : slope :regression coefficient: relationshipbetweenxandy: change iny,
asxincreases by 1.
o No error.
o Predicted formula and not observed one.
o We look at the red line instead of a gray line.
● Conditional mean(of y) = Predicted mean(of y).
● Notation y I x
o y given x.
o Conditional mean
● Assumptionsdistribution of ylinear regression (3):
1. It needs to be linear regression.
2. yis normally distributed for all values ofx
o F or each value of x, y needs to be normally distributed, and the mean of normal distribution
equals the predicted score of y
o Therefore, thepredicted score of y=conditional mean.
3. Variation(SD) in scores onyis the same for allvalues ofx.
● No assumptions fordistribution of x.
● b1: represent also the difference between the scoresby the two variables. Ex: differences score men and woman.
● Is the relationship relevant?→we need to study→R2=varianceof yexplainedby x = measure effectsize.
o var (y) explained variance by x=b1 2 * var (x)
o var (y) not explained variance by x=standard errorof the estimate =var (e)
o Total variance (y)= b12* var (x)+var (e)
o R2=b12* var (x)/ (b1 2* var (x)+var (e))
● Psychological variables → standardize score → multiple ways to do this:
1. Z-score
o Z score - does NOT require assumption of normality (M and s)
o Normalize Z score (based on empirical percentile score) - requires assumption of normality.
2. Other distributions (t-score)
3. Percentile score
o Empirical
● Does not required normal distribution
● F rom empirical tonormalizez score also possible→ assuming normal distribution from
population
● Based on data
● Theoretical(table)
F rom z-score to percentile score
●
● Normally distributed
● Interpreting scores
○ Variance: how much the scores in a distribution deviatefrom the mean
○ Standard deviation:square root variance
, S kewed distribution:positive → right tail/ negative → left tail
○
○ Kurtosis: positive → taller / negative → shorter
○ Covariance: degree of association between thevariabilityintwo
distributions(positive/ negative)
■ Provides information aboutdirection
○ Correlation: Degree of association between two variables
(strong/ weak)
○ Correlation coefficient: number of correlation - from-1
to +1
○ Reflectsmagnitude: close to -1 or +1 means that the
association is very strong
Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:
Garantiert gute Qualität durch Reviews
Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.
Schnell und einfach kaufen
Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.
Konzentration auf den Kern der Sache
Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.
Häufig gestellte Fragen
Was bekomme ich, wenn ich dieses Dokument kaufe?
Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.
Zufriedenheitsgarantie: Wie funktioniert das?
Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.
Wem kaufe ich diese Zusammenfassung ab?
Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer bernarditarichards. Stuvia erleichtert die Zahlung an den Verkäufer.
Werde ich an ein Abonnement gebunden sein?
Nein, du kaufst diese Zusammenfassung nur für 6,49 €. Du bist nach deinem Kauf an nichts gebunden.