This document contains my notes of the knowledge clip, my notes of the lecture, my notes of my workgroup meeting & summaries of the mandatory (and 2 extra) literature.
2023-2024, Block 1 GW4003MV. Advanced Research Methods
WEEK 2
Are you certain?
Moderation, mediation, and statistical
significance
Inhoud
Knowledge clip..................................................................................................................................................2
Knowledge clip 2: OLS regression.............................................................................................................2
Lecture 2 (8 sept)..............................................................................................................................................4
Part 1. OLS and moderation..........................................................................................................................4
Part 2. Mediation..........................................................................................................................................8
Part 3. Statistical significance......................................................................................................................12
Part 4. Beyond p < 0.05...............................................................................................................................14
Workgroup meeting (12 sept).........................................................................................................................17
Homework assignment...............................................................................................................................17
Research case 1: Corrector therapy for infants with Malycosis...............................................................17
Research case 2: Interpreting study results using OLS regression...........................................................22
Literature........................................................................................................................................................29
Wheelan: Chapter 9: Inference...............................................................................................................30
Wheelan: Chapter 11: Regression Analysis.............................................................................................32
Wheelan: Chapter 12: Common Regression Mistakes............................................................................32
Kennedy-Shaffer (2019). Before p < 0.05 to Beyond p < 0.05: Using history to contextualize p-values and
significance testing..................................................................................................................................32
Greenland, et al. (2016). Statistical tests, P-values, confidence intervals, and power: a guide to
misinterpretations..................................................................................................................................32
Wasserstein (2019). Moving to a world beyond “p < 0.05.”....................................................................32
EXTRA LITERATURE: Nuzzo (2014). Scientific Method: Statistical errors.................................................33
EXTRA LITERATURE: Cole, Hernan (2002). Fallibility in estimating direct effects.....................................33
1
,2023-2024, Block 1 GW4003MV. Advanced Research Methods
There are many types of regressions. The 2 types most commonly used are: OLS/linear and logistic
regression. Which regression type you should use, depends on the outcome variable (Y) of interest:
OLS regression Y = continuous.
Logistic regression Y = dichotomous.
Continuous variables can take any value within a
certain range. E.g. age, BMI.
Dichotomous variables only have 2 potential
(often binary) outcomes. E.g. insured/uninsured,
admitted to hospital (yes/no).
Example: RQ: What is the effect of height on weight?
The regression equation describes the relationship
between the exposure variable (X) and the outcome
variable (Y).
The beta coefficients are estimated averages and are
always expressed on the same scale as the outcome (Y).
Running an OLS regression means that we are fitting a
linear curve that is as close to the observation points as
possible.
The name ‘Ordinary Least Squares’ is attributed to the foundation of principle of minimizing the sum of the
squared differences between the fitted/predicted and the observed values. We calculate the squared
2
,2023-2024, Block 1 GW4003MV. Advanced Research Methods
differences because some differences are positive and some are negative, and by calculating the squared
difference you cancel that out.
The intercept/constant (B0) describes
the value of Y at X=0 (in theory ofcourse,
because in practice this is almost
impossible).
Coefficient (B1) describes the slope; this
represent the average increase in weight
with every increase in height.
The difference between the estimated
value by calculating (via the regression
equation) and the observed value is called
the ‘error term’ (ε). The smaller the error
term, the better the estimate.
Coefficients of an OLS regression have
multiple meanings: not only positive and
negative, but also the average size of the
effect.
Usually there are more variables. Look at this example:
3
, 2023-2024, Block 1 GW4003MV. Advanced Research Methods
Lecture 2 (8 sept)
Part 1. OLS and moderation
Slide 3 – 6. Recap week 1
We use DAGs to meet the conditions
(positivity, consistency and exchangeability),
especially for the exchangeability condition
via adjustment in the regression analysis.
Slide 8 + 9
The type of regression analysis you
use is dependent on the outcome
variable. If you have a continuous
variable as outcome, you will use an
OLS regression analysis.
Adjustment in regression analysis
always means: include one or more
confounders (and/or intermediate
variables on causal paths) in
regression analysis at the same time.
So adjustment = including.
There are many terms used for this:
adjustment, controlling, correcting,
accounting, factoring in, …
Slide 10
However, the software doesn’t tell
you how to interpret the results.
DAGs help you with the
interpretation.
4
Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:
Garantiert gute Qualität durch Reviews
Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.
Schnell und einfach kaufen
Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.
Konzentration auf den Kern der Sache
Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.
Häufig gestellte Fragen
Was bekomme ich, wenn ich dieses Dokument kaufe?
Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.
Zufriedenheitsgarantie: Wie funktioniert das?
Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.
Wem kaufe ich diese Zusammenfassung ab?
Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer dsmeets123. Stuvia erleichtert die Zahlung an den Verkäufer.
Werde ich an ein Abonnement gebunden sein?
Nein, du kaufst diese Zusammenfassung nur für 5,99 €. Du bist nach deinem Kauf an nichts gebunden.