100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
Zusammenfassung Mathematik für Physiker 4 (Analysis 3) - Formelzettel/CheatSheet 5,59 €
In den Einkaufswagen

Zusammenfassung

Zusammenfassung Mathematik für Physiker 4 (Analysis 3) - Formelzettel/CheatSheet

 18 mal angesehen  0 mal verkauft

Umfangreiches doppelseitiges handschriftlich beschriebenes Cheat Sheet / Formelblatt zur Klausur in Mathematik für Physiker 4 (Analysis 3), enthält alle Stoffgebiete des gesamten dritten Semesters (Riemann-Integration, Integralsätze, Funktionentheorie, Maßtheorie, Fourieranalysis, Hilberträume...

[ Mehr anzeigen ]

vorschau 1 aus 3   Seiten

  • 3. januar 2024
  • 3
  • 2020/2021
  • Zusammenfassung
Alle Dokumente für dieses Fach (3)
avatar-seller
AdelinaB
RIEMANN-INTEGRATION OBERFLÄCHEN INTEGRALE INTEGRALSÄTZE




W
-




vol(A) -vol(B) für BLA





Tangential vektoren ...
d h .




Fläche
.




vol(A) + voL(B) -volln)


(H)
VOL/AuB(
regulär wenn




MamitRapk
R" Saar
=



Lebesgue-meßbar (Jc)
=>




A
Menge
,
= ·
,
wenn int bar .
U det + 0

·

Lebesgue-Maß voln(A) :=
Stdx San =

1x ** -
= Mm offen TECCU R2)
L


A + X = vo : , Lokale Parar .
eine UMFW =


Jede beschränkte offene oder
Kompakte Menge ist
meßbar ! #) vol(A) for 0 Orthonormal- ra
metrischer Tensor
J + (x)TJ +
+
&



(x)
Ill11
4'(x)
a




4'(x)
=


G(x)
.




=
Matrix =




für Ambeschränkt von = Meinear & A ist Un (n-1) ten Dimension Ru

Abeschränkt VOM
der
Volumen Gramm'sche Determinante 34)
von

g(x) =
det (G(x)) =
det (3 T

LA) > lokal als
Graph eine Funktion f
-




DEMO
f A-R beschränkt und fü stetig

Riemann-Sf(x)dx
:


Lokal als
Sw
>

NS-Menge einer Funktion &
Suf(4(y))5g dy
-




regulären
Riemann-integriera in U-R" offen =
>7 ausschöpfendende
Folge (Ar-u)
f(x)dS(x) =

>
-

regulär parametrisiert durch (M) = A




E An eine
mit Am beschränkt

malberich Oberflächen f
An V An integral W R
vo n >
wenn U :
-




äußeres Normalenfeld
=
,
dAr Nullmenge R VaedA :



vol(U) = sußvol(Are) volm (r) Juge dy -(2) 5 S
f(x)
>
An ((x y) Rk VOL(Ar) n(x f(x)) (1
-



Ar-eX(am(x) br(x)3
SwdS) 115f(x)(2)
-

: = = =
=
y = =
+
-


: =
,




=
==
=
,


bz(x1) bn (X1 Xn-1)


1.8x(a)
dimensionales volumen
31 m
n(a) 110x(a)(l
--- -
,




uneigentlichesLimf(k)dx =Sf
-



: =


Saff)dx SanSanci aifexx)
den dx
FUBINI = ...




M als Graph fe (U = RM Rh-m) F l u ss -


JxdivF(x)dx
UMF
Joa < F(x) n(x)dS(x)
von ,


Mist
Nullmenge wenn Meßbar und voL(M)
= O
g Diffeomorphismus Al beschränkt GAUB -
=

,
118 f (x)I)
:
für m= n 1 g(x) 1
,
-

: = +
Transformations satz COAzukoMp
SoaXFCPcu)) RCP(u)) > Eget du
=> auch :
Teilmenge , endl .


Vereinigung
, => Srf(x)dx =
0 .


=

fürf A-R beschr
Jg(A) f(y)dy (af(g(x)) (det]g(x))dx Fläche ergänzen)
:

abzählbare Kompakt ·
Teil einer UMF
R R
,
Mengen , =
:U_ =

Parametrisierung stetig diffbar

AR abgeschlossen Graph G [ (xig() > Ru 3
+


for
1(d
GREENISTONES
Saxf(y)dy = fr dr ja
xd24(y)/)
m= 2
: =


)
-

=
=
4(y)
absolutSalf(x))dx
+
g
:
A-R Stetig ist
Nullmenge ! man = 3 : für IR2


-che
Zirkulation


Standartsimplex 14: =
EXER" (x - -
x = 0 ;
x + - +
xn = 13 = volm(X) =
E Träger von f n : = R" >
-

k supp(f) :=
[xeU/f(x) + 03 STORES Sa < rotF, v > dS(x) =
SoxF(r) dr
(A Kompakt)
Sa dr



UyItivaYartabschatz z
außerdem : <V fxg >dS =
Soaf(r) & g(r)
FUNKTIONEN THERIE faKED MitfExtiy) =
,




-

- Komplex differenzierbar beizo ,
wenn m f) ex i s t i e r t ~ harmonische 1 (dt . GREEN
1 Joaf <8g , v> dS =

Sa(f Vg> ,
+
fAg)dx
d h . Au =
0 & XV =
0

Jox[fdrg-gdrf]dS
.




-holomorph . GREEN
2
f'(z0) VzoEA existiert
SalfAg-gDf)dx
S
-



, wenn wenn =




() = (
-



f(xy)
Dreiecksstreckung
holomorph
- =
f loffen : +
K Stetig
:
-




-ganz wenn f auf ganz
=
,




z0) zo)
=
beliebigen weg mit Richtungsableitung drg(x) g(x + +v(x) /t
Saf((t))j(t)dt
f(z) f(z0) f' (z0)(z O(z über 0


Jjf(z)dz
= = +
-
+ - =




cauchy-Riemann-Dalen =



((t) X(t) if(t)
Integralsatz
-
=
+




DEMO
CAUCHY'scher
jff(t))-j(t)dt =
=
0 flokal konform , wenn f holomorphi ze U f '(z) :
+ 0

vertauschregel
f Konform wenn flokal konform und bijektiv wenn
wegunabhäng integrierbar
Srdnf
Tausensten
,


fastetig konv gl. .




=holomorph(Moral
aufj gegen
U einfach
(ful'konv. gl gegen (f)
integriert werden !
zusammenhäng .
=>
e
.




alle
geschl Kurven i n
U null-homotop
homo
·
wenn Zo wenn
in U
.




.



d h JF [o 1]" F(0 t) (t) und F(1 , t) zo und F(s , 0) F (S 1)
U mit
null-homotop sind
=
>
( U
En
: = =




Jede Potenzreihe P()
-


,


anz" stellt i n
.
.
, ,




Es analytisch
Emanta
=




Unten top
: = ·

Ur Ja mit
gleichen Randpunkten homotop wenn
j)
Lingder
·
=




holomorphe Funktion dar
. ,


UGebiet ihrem Konvergenzradius



S
ist eine
Kreisscheide Kr(a) U ⑧



Vo Un geschlossen frei-homotop wenn in V stetig inenander deformeren zusarenhängende offene
fl
,




= -(m)
·
. , , ,
=

d h JF 201]2 F(at) jolt) und Fse t) je(t) und F(s 0) F(s , ) nicht-teere
Menge FARTORZERLEGUNG F(z) bei an

endzei
. : U Ft = : : = =
=




Sounds
.



, ,


-




① Holomorphie LiOULLE
auf Kreisscheibe Ur(t) =
a + reit 7
to [0 , 25(
der
Ableitung
f((z) = zyk+
+de bedebeschränkteganeine
↳ für (f(a))zM
gilt :
lau An f (z) =

PrdS CAUCHY-
INTEGRALFORMEL
mit du)
② Isoliertheit der NS Konvergenzradius R2 dist(a ,
f(z) =
J f(z + reit) dt Mittelwerteigenschaft
· ++ 0 auf U
holomorph
=

Menge der NS hat top ! => f besitzt Stammfunktion F(z) CAUCHY'SCHER INTEGRALSATZ





·




·

fig holorph auf U :
ZZEU If(zD g(z)} =
hat HP =-= f 9
f- -
mit F(z) : =
Jaf(s)dS a
beliebig (i) Vohomotopewe =
Spof(z)dz Su =
.
f(z)dz
· f Konst in Gek einf .
zsh . =
f(G) offen (Identität e (ii)
B
Hauptzweig des komplexen Logat y nullhomotope =
artz
.
. Kurve f(z)dz =
0

IDENTITÄTSSATE
Ex FzcU :
f(z) =
0
f U
holomorph
:
=
K &

· n-fache NS bei zu El ,
E((z)
:= en(r) = +ie (iii) U einf . zusammen. f in M wegunabhängig integrierbar

EL (zeulf(z) 03 besitzt HinU Wenn f(k) (zo) =
0 kam und fu(zd) + O für fricht Konstant V = U offen f() offen
for
=>
Hoffen f : >D
=


und
F: Stetig
-




K holomorph
analytische Fortsetzung
·
f(R) (z0) >
O
holomorph
-




= JzoEU FRENo und :
If(z)/
=


nimmt in U ein MAX
:
an
ZIfD nimmt Max auf OU an
Mit Uzu = K , wenn F(z)




DEMO
zu f(z) f(70) O
I
=
=
=> If(z)l in zo 190k] MIN => =




LAURENTREI HEN ENTWICK LUNG um Zo RESIDUENKALKÜL
umgebungakt
dh




Ute Restf(z)
. .




hebbar
Mit
von z

filfen homorph Kuzo3
fanalytisch auf

Pfldz
wenn

=> JEERJ20
,


:
/Z-zo(d => (f(z)) = C (Riemann) Residuum Resot =
-L
Pol wenn zu habbar für z(z-zof(z) mit
wenn 7230 1Z-Zole (0 , 2) = zu
wesentlich
, R :

Ordnung gularitatin
für weder nebbar noch Pol
Enezam(z-zo)" (Anzah umdrehungen)
:



Rz (zo)
Kr Konvergiert f(z) =
auf Reklz-ZoltRa
,

, ↳ =

,

analytisch re(R Rz) hatfk-fachen Pol bei


=
für flz) dort Stammfunktion !
a
,
dann besitzt f(z) eine
an(7-Zol an (7-70)- Zo
= [(z-a) =(z)]z
+
Resof


↳ Eines
n1 =
auf Re < Iz-ZoKRz =
0
LNEBENTEIL~ LHAUPTTEILL HT
5 INT E. Einheitskreis i
ab !
↳ bricht bei P nomen => k = 1 :
Reszof = m z (z -zo) ·
f(z)


annte =mzzf
=> k =
2 :
Restof
mit as ↳ funktionieren isolierte Singularitäten
=
ach




&
f(z) = mith'(0)
um




GradTERSCHEN
+0 = Restof
= GEOMETRISCHE REIHE ↳ a -
1 heißt RESIDUUM von f(z) bei zu

for1z-zol



#
HT 0 nicht
↳ f(z)
analytisch auf 1z-zol < Re => =
wenn aso

230
8
angegeben
wenn Konvergenzbereich OLIZ-ZolcR : =>
FALL-
&



zo hebbar <=> HT verschwindet




&ach ke ~
Polnterordnung HT bricht nach

A-z
=
-

zu
>
-

KIl :
hebbare Singularität ka b(0) =
By(0) (Ba(0)
:
Poll-kltordnung Ordnung (n) ab f) =

&
ab

,



wesentlich
enthalt
Zu enthalt O
< HT bricht nicht ab
verschiedene
Kab(0)
paarweise *
> danach einzeln entwickeln
jeden Summanden
-




MABTHEORIE Menge [ [0, 27
Mi Maß auf E
,
FOURIERANALYSIS mitf-1E
+

linear
Pfl = 2x = 2) Potenzmenge
mit von wenn
Mi =n s




-

DEMO
F D
M(UAil [m/Ai) F(r)
*


"San eikf(x)dx
:
disjunkte AitE für
(25)
: =



[P(R) O-Algebra
-




erweitern *
wenn =
,

G-Algebra
-




i) At 2 A b ) At [
(R & , , M) Maßraum vollst .
=> f ist stetig
=> =

Fourier transformierte I

MitS
ist beschra
(1 T)
wenn
MCA) 01 BA M(B) 0 =>
1") Topologischer Raum
= = =

ii) AieZSien Wen (a
Aid
[(k)
=
ikn
,
4) (k)
-




mit il f(x
g(x)
.

= -



= =
e
iii) fil-R meßbar
de [
Emin7 T Borel &- Algebra
; DeE => , wenn
inx
E(k 4)
ii)
g(x) f(x) y(k)
ExeR/fektbes
Telgeraderegradeeine
=
VER
=
e
= -




:
= alle bzgl [meßbaren Mengen




S

BANACI- ABER beschränkt
.




123
1f(X k) = Fk) -
ungerade
viilg(x) f(E) >(k)
, = 0
R meßbar Se IdM
= .




exis
( E) Meßbarer
S kl
=
=
wenn
-




Raum , ·



=>
7k und Zerlegungen und andersrum für f E
,
PARADOX
>
FALTUNG
Bi
* Ai B
i'k F(k)
*

Spn f(x y)g(y) dy
=
in

(afdM SmNa(x) f(x)dx Ableitung
=

mit
fxg (fxg)(x)
; :

0f(k) g
f i -
-
= = : =
auf Borel-Algebras existiert nur ein
=

Maß disjunkte Teilmengen ,
=>
-
Saxf(x) = (0) (fxg) * n f x (gxh)

mit (f * g)(x)
M(A x) M(A) FA XeRn wobei f ü definiert ist
=




5 Jos
d
mit Xa(x) I(k)
+
Vi
Augment f(n)(k)
=
.
S "
Bi
. .




zu
, :



(ik)
.

=

=
n)
M(Q) fx(g +
fxg f xh
voL(Q)
(25) 27 G
= +
FQuaderech Jah
gedreht)
=




fxg
nur verschoben
mit
Sammf(xixn]dxnd 6Y (i)k
.
=




g
.




FUBINI x f(x)
=
LEBESGUE-MAB
= mit
g(x) =

11 fegIle = 11 flln :




Ilg111
= (ux f)(x) = (u() = f)(x)



3e
integrierbar wenn
SelflaM Inverse F = (X) fretraf
Lebesquentegratomerse
=> ,




figf
Ist
=> SIf1dx 11 flle
"2 San ein f(k)
=




f(x) (2) de
-



=




M it F(t) M(x(-2(f(x) > + 3)
=> arch : max
(fig) =
E(f g + + 1f -




g) fafdM

Snicht
: =




g)
1
(f (f
min
g) ( (f
=
n
-
+
g
-




SrgdM
-




umkehrfunktion (0 f(0)] Schwartzraum
,
= von f [0 17 :
,
>
-




,
=
=
Raum schnell abfallender "Funktionen f(x +D ) = O

(f(x)dx S : F(t)dt
,

=> in
...


[fe 20 (Rh , ¢ ) /Va BEIN." &Pf(x)
*
SCR")
=




SATZ der MONOTONEN KONVERGENZ =>
7G ( (R =
feS(R) :
: =
,
:
X1 + X beschränkt]
SfaM
,

Ist = O

mSfndM = Founertransformierte lobwoh nicht priodisch. .

"Spf)
-
Offst- fumeßbar mit fricht 20 0]
find
f=
,
·




SATZ JrnF(x)
der MAJORISIERTEN KONVERGENZ
g(x)dx
A

g)


n
f ü Skalarprodukt (f , :=



an an figeScru)
>
-




↑ :
. .




[fn : meßbarzstetig und En existiert fü
<f , f)1P
i)
g(x) + (x)
Norm 1/fllp : =




2P(R) EfiR &Erlf(lodr >03
x +>

Jogndm = gndr
und +(0 , 0]
7g :
int bar .
, sodass En :
Ing >
:= + = lineare und Abbildung

x
-
-

X +>


f beschränkt 20 (2) if meßbar/7 If()) füh ii) +E SCRU) => FESCRY) M


Egnfü Konvergent )
:
U
stetig integrierba. (für [Sigulam ! S
: =
=>
:
beschränkt ,
< 00 = .




p-mal integrierbarer Funktionen
- -
Fit bijeretiv =
2
iii) X f(x) f Sp(F(k)12dk
~
Raum x + >
f integrierbar lauft) !
-




: K Kompakt-- DStetig = A und B
R2AXB Relation zu
in)x - f(x)
54 KIEn/Ynl ]
.




+>
wobei (P(R) := < =
AUTO MORPHISMUS auf SCRY)
Äquivalenzrelation &, g


das
R & AXA auch :




fe2P() fllp 0 = M[x R(f(x) + 03 =
0 ↳ (Rn) = L (M) = (IRY)
Cauchy-Schwartz
=
für 11
EyAlxwy]
=
:
[X] Kf g)) 11 Fgl)

E
Ex z :
: = :
,
=
+ 11 f1lz-IlgIlz in 10 , 07
mit Xwy , y ,



Äquivalenzklasse von XeA
(() = 20()/v mit fugz f =
gf . ü

Formende
.


X-X
+=
·




·
X
y
=>
ynx A(w [[X](x = A3 Hölder(pgeG 0]) ,
: 1 :
f.
ge( =
IIfglIn -IflipIIglla
fllp
:=


[f]llp 11
Il flla inf[cER/1f(x)) 3 II
= =


: = = c fü XnZ für g =
p
=
Xy1ynz Quotientenmenge beg.
~

(SX (f(x)(dx(Sk(f(k)(dk)
=>


Heisenberg : 14
. ·




Banachraum !
=
für peG 0] ,
ist (LP() ,
Il ·


11p) ↓

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer AdelinaB. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für 5,59 €. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 15 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf
5,59 €
  • (0)
In den Einkaufswagen
Hinzugefügt