100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
Solutions for Thermal Radiation Heat Transfer, 7th Edition Howell (All Chapters included) 27,18 €   In den Einkaufswagen

Prüfung

Solutions for Thermal Radiation Heat Transfer, 7th Edition Howell (All Chapters included)

1 bewertung
 71 mal angesehen  3 käufe
  • Kurs
  • Physics - General Relativity
  • Hochschule
  • Physics - General Relativity

Complete Solutions Manual for Thermal Radiation Heat Transfer, 7th Edition by John R. Howell, M. Pinar Mengüc, Kyle Daun, Robert Siegel ; ISBN13: 9780367347079. (Full Chapters included Chapter 1 to 19).... 1. Introduction to Radiative Transfer. 2. Radiative Properties at Interfaces. 3. Radiative ...

[ Mehr anzeigen ]

vorschau 4 aus 393   Seiten

  • 25. januar 2024
  • 393
  • 2021/2022
  • Prüfung
  • Fragen & Antworten
  • Physics - General Relativity
  • Physics - General Relativity

1  bewertung

review-writer-avatar

von: v_stevenson0131 • 5 Monate vor

reply-writer-avatar

von: mizhouubcca • 3 Wochen vor

Thank you for your positive feedback! I’m glad you found the information useful. I look forward to your next visit!

avatar-seller
Thermal Radiation Heat Transfer
7th Edition by John R. Howell



Complete Chapter Solutions Manual
are included (Ch 1 to 19)




** Immediate Download
** Swift Response
** All Chapters included

, 1.Introduction to Radiative Transfer



SOLUTIONS- CHAPTER 1

1.1 What are the wave number range in vacuum and the frequency range for the visible spectrum (0.4–
0.7 μm)? What are the wave number and frequency values at the spectral boundary (25 m)
between the near- and the far-infrared regions?

SOLUTION: c0 = 2.99792458 x 108 m/s; 1 = 0.4 x 10-6 m, 2 = 0.7 x 10-6 m,
1 = 1 / 1 = 2.5 x 106 m-1, 2 = 1 / 2 = 1.428571 x 106 m-1,
1 = c0 / 1 = 2.99792458 x .4 x 10-6 = 7.494811 x 1014 s-1,
2 = c0  2 = 2.99792458 x .7 x 10-6 = 4.282749 x 1014 s-1,
boundary = 25 x 10-6 m, boundary = 1 / boundary = 4 x 104 m-1,
boundary = c0/boundary = 2.99792458 x x 10-6=1.19917 x 1013 s-1
Answer: 2.5 x 106 to 1.4286 x 106 m-1; 4.2827 x 1014 to 7.4948 x 1014 s-1; 4 x 104 m-1; 1.1992
x 1013 s-1.

1.2 Radiation propagating within a medium is found to have a wavelength within the medium of 1.633
μm and a speed of 2.600 × 108 m/s.
(a) What is the refractive index of the medium?
(b) What is the wavelength of this radiation if it propagates into a vacuum?

SOLUTION:
C0 = 2.99792458x108 m/s; m = 1.633x10-6 m; cm = 2.600x108 m/s.
(a) nm = c0/cm = 1.153
(b) 0= nmm = 1.883x10-6 m = 1.883 m.
Answer: (a) 1.153; (b) 1.883 m.

1.3 A material has an index of refraction n(x) that varies with position x within its thickness. Obtain an
expression in terms of co and n(x) for the transit time for radiation to pass through a thickness L. If
n(x) = ni(1 + kx), where ni and k are constants, what is the relation for transit time? How does wave
number (relative to that in a vacuum) vary with position within the medium?

SOLUTION: n(x) = co / c(x), so c(x) = co / n(x) = dx/d. Then
ni  kL2 
 
L L
1 ni
t= n( x )dx = (1 + kx )dx =
L + 
c0 x =0 c0
x =0 c0  2 
c = m; = c / m = co / o; co / c = n = o / m; m / o = 1/n so m / o = n = ni(1 + kx).
2
ni kL
Answer : L+ ; ni(1 + kx).
co 2

1.4 Derive Equation 1.30 by analytically finding the maximum of the Eλb/T 5 versus λT relation (Equation
1.24).




1.1

, 1.Introduction to Radiative Transfer


SOLUTION: Take the derivative of Eb/T5 with respect to T. To simplify notation, let  = T .

d  
d (E  b / T 5 )
d( )
= 
2 C1
 = 2 C1
d (  )  (  )  exp(C2 /  ) − 1 
5
d
d( )
 
(  ) / exp(C2 /  ) − 1
−5


 

 (
= 2 C1 [ −5 (  ) ] /  exp(C2 /  ) − 1 − (  )
−6 −5 −C2 / (  )
2
)
exp(C2 /  ) 

exp(C2 /  ) − 1 
2

2 C1  C2 /  
= 6 [−5 + 
  exp(C2 /  ) − 1  1 − exp( −C2 /  ) 
C2 / max C2 / ( T )max
Setting the result = 0 to find the maximum, = =5
1 − exp( −C2 / max ) 1 − exp −C2 / ( T ) 
 max 

Clearly, the product (T)max at the maximum of the Planck curve is equal to a constant, which must be
found by iteration. Using iteration or a root-finding program gives ( T )max = C3 = 2897.8  m  K
.

1.5 A blackbody is at a temperature of 1350 K and is in air.
(a) What is the spectral intensity emitted in a direction normal to the black surface at λ = 4.00 μm?
(b) What is the spectral intensity emitted at θ = 50o with respect to the normal of the black surface at
λ = 4.00μm?
(c) What is the directional spectral emissive power from the black surface at θ = 50o and λ = 4.00
μm?
(d) At what λ is the maximum spectral intensity emitted from this blackbody, and what is the value of
this intensity?
(e) What is the hemispherical total emissive power of the blackbody?

SOLUTION:
2C1
(a) At T = 5400 m K, Ib,n = = 8706 W/m2•m•sr.
 e
5
( C2 / T
−1 )
(b) Because the intensity from a blackbody is independent of angle of emission, the result is the
same as part (a).
(c) Eb(4 m, 50°) = Ib cos 50° = 8706 x 0.6428 = 5596 W/m2•m•sr
(d) From Equation 1.30, maxT = C3 = 2897.8 m K. Thus, max = 2897. = 2.1465 m.
2C
At max, Ib,max = 1
= 18,365 W/m2•m•sr
5
max (e
C2 / maxT
)
−1

(e) From Equation 1.35 and Table A-4, Eb = T4 = 5.67040x10-8 W/m2•K4 x (1350)4 K4
= 1.883x105 W/m2
Answers: (a) 8706 W/(m2·m·sr); (b) 8706 W/(m2·m·sr); (c) 5596 W/(m2·m·sr);
(d) 2.1465 m, 18365 W/(m2·m·sr); (e) 188.34 kW/m2.

1.6 For a blackbody at 2450 K that is in air, find
(a) The maximum emitted spectral intensity (kW/m 2·μm·sr)
(b) The hemispherical total emissive power (kW/m 2)
(c) The emissive power in the spectral range between λo = 1.5 and 7 μm
(d) The ratio of spectral intensity at λo = 1.5 μm to that at λo = 7 μm




1.2

, 1.Introduction to Radiative Transfer

SOLUTION:
(a) Ib,max = C4 T5 = 4.09570x10-12 x 24505 = 361.54 kW / m•m2•sr
(b) Eb = T4 = 5.67040x10-8(W/m2•K4) x (2450)4 (K4) = 2043.1 kW/m2
(c) Using Equation 1.41, for 2T = 17,150 m•K, F0- 2T = 0.97815 and for 1T = 3675 m•K,
F0- 1T = 0.41877; F2T - 1T = 0.55938; Eb(1-2) = 0.55938 T4 = 1142.8 kW/m2
2C1
(d) Using Ib,n = , Ib(=1.5)] / [Ib(=7)] = 3.1911x105/ 5.3935x103 = 59.165
 e
5 C2 / T
(−1 )
Answers: (a) 361.54 kW/m2•m•sr; (b) 2043.1 kW/m2; (c) 1142.8 kW/m2; (d) 59.17

1.7 Determine the fractions of blackbody energy that lie below and above the peak of the blackbody
curve.
C 14388(  m  K )
SOLUTION: At the peak, maxT = 2893 mK. Using Equation 1.41 with   2 = = 4.965
T 2897.8(  m  K )
gives F0−2897.8 = 0.25005 . Therefore, about 25 percent of the blackbody energy is at wavelengths below
the peak, and 75 percent is at longer wavelengths.

1.8 The surface of the sun has an effective blackbody radiating temperature of 5780 K.
(a) What percentage of the solar radiant emission lies in the visible range λ = 0.4–0.7 μm?
(b) What percentage is in the ultraviolet?
(c) At what wavelength and frequency is the maximum energy per unit wavelength emitted?
(d) What is the maximum value of the solar hemispherical spectral emissive power?

SOLUTION:
(a) 1T = 5780 K x 0.4 m = 2312 m K ;
2T = 5780 K x 0.7 m = 4046 m K
F = F0-2T - F0-1T = 0.48916 - 0.12240 = 0.36676, or 36.7 %
(b) From Fig. 1.4, the UV range is taken as 0.01 to 0.4 m.
1T = 5780 K x 0.01 m = 57.8 m K; 2T = 5780 K x 0.4 m = 2312 m K.
F = F0-2T - F0-1T = 0.12240 - 0 = 0.12240, or 12.2 %
(c) The maximum energy is at  max, where, from Table A.4, C3 = 2897.8 m K, so
max = 2897. = 0.50134 m.
The corresponding frequency is
max = co /  = 2.9979x108 (m/s) / 0.50134 x 10-6 (m) = 5.9798x1014 Hz
(d) At max T = C3 = 2897.8 m K, using
2 C1
E max b = gives Emax,b =8.301x107 W/(m2·m).

5
max (e
C2 / maxT
)
−1

Answer: (a) 36.7%; (b) 12.2%; (c) 0.5013 m, 5.98x1014 Hz;
(d) 8.301x107 W/(m2·m).

1.9 A blackbody has a hemispherical spectral emissive power of 0.0390 W/(m2·μm) at a wavelength of
85 μm. What is the wavelength for the maximum emissive power of this blackbody?

SOLUTION: With Eb and  given, solve for T from Planck's equation,




1.3

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer mizhouubcca. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für 27,18 €. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 14 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf
27,18 €  3x  verkauft
  • (1)
  Kaufen