100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
Solution Manual For Elementary Differential Equations and Boundary Value Problems, 12th Edition by William E. Boyce, Richard C. DiPrima, Douglas B. Meade Chapter 1-11 17,27 €
In den Einkaufswagen

Prüfung

Solution Manual For Elementary Differential Equations and Boundary Value Problems, 12th Edition by William E. Boyce, Richard C. DiPrima, Douglas B. Meade Chapter 1-11

1 bewertung
 157 mal angesehen  2 mal verkauft
  • Kurs
  • Solution Manual
  • Hochschule
  • Solution Manual
  • Book

Solution Manual For Elementary Differential Equations and Boundary Value Problems, 12th Edition by William E. Boyce, Richard C. DiPrima, Douglas B. Meade Chapter 1-11

vorschau 4 aus 591   Seiten

  • 11. april 2024
  • 591
  • 2023/2024
  • Prüfung
  • Fragen & Antworten
  • Solution Manual
  • Solution Manual

1  bewertung

review-writer-avatar

von: josetally • 2 Monate vor

Excellent document. It contains all the solutions.

reply-writer-avatar

von: solutions • 2 Monate vor

Thanks

avatar-seller
CHAPTER 1


Introduction
1.1

1.




For � > 3∕2, the slopes are negative, therefore the solutions are decreasing. For � < 3∕2, the
slopes are positive, hence the solutions are increasing. The equilibrium solution appears to be
�(�) = 3∕2, to which all other solutions converge.

2.




For � > 3∕2, the slopes are positive, therefore the solutions increase. For � < 3∕2, the slopes
are negative, therefore, the solutions decrease. As a result, � diverges from 3∕2 as � → ∞ if
�(0) 3∕2.
3.




For � > −1∕2, the slopes are negative, therefore the solutions decrease. For � < −1∕2, the
slopes are positive, therefore, the solutions increase. As a result, � → −1∕2 as � → ∞.
1

,2 CHAPTER 1 Introduction


4.




For � > −1∕2, the slopes are positive, and hence the solutions increase. For � < −1∕2, the
slopes are negative, and hence the solutions decrease. All solutions diverge away from the
equilibrium solution �(�) = −1∕2.

5. For all solutions to approach the equilibrium solution �(�) = 2∕3, we must have � ′ < 0 for
� > 2∕3, and � ′ > 0 for � < 2∕3. The required rates are satisfied by the differential equation
� ′ = 2 − 3�.

6. For solutions other than �(�) = 2 to diverge from � = 2, �(�) must be an increasing func-
tion for � > 2, and a decreasing function for � < 2. The simplest differential equation whose
solutions satisfy these criteria is � ′ = � − 2.
7.




For � = 0 and � = 4 we have � ′ = 0 and thus � = 0 and � = 4 are equilibrium solutions. For
� > 4, � ′ < 0 so if �(0) > 4 the solution approaches � = 4 from above. If 0 < �(0) < 4, then
� ′ > 0 and the solutions “grow” to � = 4 as � → ∞. For �(0) < 0 we see that � ′ < 0 and the
solutions diverge from 0.

8.




Note that � ′ = 0 for � = 0 and � = 5. The two equilibrium solutions are �(�) = 0 and �(�) = 5.
Based on the direction field, � ′ > 0 for � > 5; thus solutions with initial values greater than
5 diverge from the solution �(�) = 5. For 0 < � < 5, the slopes are negative, and hence solu-
tions with initial values between 0 and 5 all decrease toward the solution �(�) = 0. For
� < 0, the slopes are all positive; thus solutions with initial values less than 0 approach the
solution �(�) = 0.

, 1.1 3


9.




Since � ′ = � 2 , � = 0 is the only equilibrium solution and � ′ > 0 for all �. Thus � → 0 if the
initial value is negative; � diverges from 0 if the initial value is positive.
10.




Observe that � ′ = 0 for � = 0 and � = 2. The two equilibrium solutions are �(�) = 0 and
�(�) = 2. Based on the direction field, � ′ > 0 for � > 2; thus solutions with initial values
greater than 2 diverge from �(�) = 2. For 0 < � < 2, the slopes are also positive, and hence
solutions with initial values between 0 and 2 all increase toward the solution �(�) = 2. For
� < 0, the slopes are all negative; thus solutions with initial values less than 0 diverge from the
solution �(�) = 0.
11. -(�) � ′ = 2 − �.
12. From Figure 1.1.6 we can see that � = 2 is an equilibrium solution and thus (c) and (j) are
the only possible differential equations to consider. Since ��∕�� > 0 for � > 2, and ��∕�� < 0
for � < 2 we conclude that (c) is the correct answer: � ′ = � − 2.
13. -(�) � ′ = −2 − �.
14. -(�) � ′ = 2 + �.
15. From Figure 1.1.9 we can see that � = 0 and � = 3 are equilibrium solutions, so (e) and
(h) are the only possible differential equations. Furthermore, we have ��∕�� < 0 for � > 3 and
for � < 0, and ��∕�� > 0 for 0 < � < 3. This tells us that (h) is the desired differential equation:
� ′ = � (3 − �).
16. -(�) � ′ = � (� − 3).
17. (a) Let �(�) denote the amount of chemical in the pond at time �. The amount � will be
measured in grams and the time � will be measured in hours. The rate at which the chemical
is entering the pond is given by 300 gal/h ⋅ .01 g/gal = 3 g/h. The rate at which the chemical
leaves the pond is given by 300 gal/h ⋅ �∕106 g/gal = (3 × 10−4 )� g/h. Thus the differential
equation is given by ��∕�� = 3 − (3 × 10−4 )�.
(b) The equilibrium solution occurs when �′ = 0, or � = 104 grams. Since �′ > 0 for � < 104
g and �′ < 0 for � > 104 g, all solutions approach the equilibrium solution independent of the
amount present at � = 0.
(c) Let �(�) denote the amount of chemical in the pond at time �. From part (a) the
function �(�) satisfies the differential equation ��∕�� = 3 − (3 × 10−4 )�. Thus in terms of
the concentration �(�) = �(�)∕106 , ��∕�� = (1∕106 )(��∕��) = (1∕106 )(3 − (3 × 10−4 )�) = (3 ×
10−6 ) − (10−6 )(3 × 10−4 )� = (3 × 10−6 ) − (3 × 10−4 )�.

, 4 CHAPTER 1 Introduction


18. The surface area of a spherical raindrop of radius � is given by � = 4��2 . The volume of a
spherical raindrop is given by � = 4��3 ∕3. Therefore, we see that the surface area � = �� 2∕3
for some constant �. If the raindrop evaporates at a rate proportional to its surface area, then
��∕�� = −�� 2∕3 for some � > 0.
19. The difference between the temperature of the object and the ambient temperature
is � − 70 (� in ◦ F). Since the object is cooling when � > 70, and the rate constant is
� = 0.05 min−1 , the governing differential equation for the temperature of the object is
��∕�� = −.05 (� − 70).

20. (a) Let �(�) be the total amount of the drug (in milligrams) in the patient’s body at any
given time � (hr). The drug enters the body at a constant rate of 500 mg/hr. The rate at which
the drug leaves the bloodstream is given by 0.4 �(�). Hence the accumulation rate of the drug
is described by the differential equation ��∕�� = 500 − 0.4 � (mg/hr).

(b)




Based on the direction field, the amount of drug in the bloodstream approaches the equilib-
rium level of 1250 mg (within a few hours).
21. (a) Following the discussion in the text, the differential equation is �(��∕��) =
�� − � � 2 , or equivalently, ��∕�� = � − �� 2 ∕�.

√ a long time, ��∕�� ≈ 0. Hence the object attains a terminal velocity given by
(b) After
�∞ = ��∕� .
2
(c) Using the relation � �∞ = ��, the required drag coefficient is � = 2∕49 kg/s.

(d)




22.




All solutions become asymptotic to the line � = � − 3 as � → ∞.

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer solutions. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für 17,27 €. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 14 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf
17,27 €  2x  verkauft
  • (1)
In den Einkaufswagen
Hinzugefügt