Quantitative Economics and Econometrics (ECON0019) (ECON0019)
Zusammenfassung
ECON0019 (Quantitative Economics and Econometrics) Term 2 Summary - UCL Economics BSc Second Year
85 mal angesehen 0 mal verkauft
Kurs
Quantitative Economics and Econometrics (ECON0019) (ECON0019)
Hochschule
University College London (UCL)
Book
Introductory Econometrics
Summary of Term 2 taught in ECON0019 (Year 2021/2022)
Detailed notes from lecture notes, textbooks and other materials.
Topics covered include: 1) Potential Outcomes and Experiments, 2) Instrumental Variables I, 3) Instrumental Variables II, 4) Simultaneous Equations Models, 5) Limited Depend...
Test Bank For Introductory Econometrics: A Modern Approach 7th Edition By Jeffrey M. Wooldridge
ECON0019 (Quantitative Economics and Econometrics) Term 1 Summary - UCL Economics BSc Second Year
Alles für dieses Buch (13)
Schule, Studium & Fach
University College London (UCL)
Unbekannt
Quantitative Economics and Econometrics (ECON0019) (ECON0019)
Alle Dokumente für dieses Fach (2)
Verkäufer
Folgen
EconEliteNotes
Deine Reviews
Inhaltsvorschau
UNIVERSITY COLLEGE LONDON
DEPARTMENT OF ECONOMICS
Economics BSc (Econ)
Second Year – Term 2
QUANTITATIVE
ECONOMICS AND
ECONOMETRICS
ECON0019
Rodrigo Antón García
rodrigo.garcia.20@ucl.ac.uk
London, 2022
,
, Contents
Topic 1 – Potential Outcomes and Experiments. Wooldridge Chapter 2–7a and 3–
7e & Stock and Watson Chapter 13.1–13.3.
o Topic 1.1 – Econometrics of Causality and Experiments. 1
o Topic 1.2 – Randomization Based on Covariates. 6
o Topic 1.3 – Pros and Cons of Experiments in Economics. 8
Topic 2 – Instrumental Variables I. Wooldridge Chapter 15.1–15.2 & Stock and
Watson Chapter 12.
o Topic 2.1 – The Basics of Instrumental Variables. 13
o Topic 2.2 – Becoming an Instrumental Variables Pro I. 19
Topic 3 – Instrumental Variables II. Stock and Watson Chapter 13.6 and Appendix
13.2.
o Topic 3.1 – Becoming an Instrumental Variables Pro II. 24
o Topic 3.2 – Instrumental Variables in Experiments. 28
o Topic 4.1 – Supply and Demand. 32
o Topic 4.2 – The General Case. 36
o Topic 4.3 – Maximum Likelihood Estimator (MLE). 41
Topic 5 – Limited Dependent Variables I. Wooldridge Chapter 17.1 & Stock and
Watson Chapter 11.
o Topic 5.1 – Limited Dependent Variables (LDV) Content. 45
o Topic 5.2 – Binary Response Models. 46
o Topic 5.3 – The Logit and Probit Binary Response Models. 46
o Topic 5.4 – Estimation of Logit and Probit: NLLS and MLE. 48
o Topic 5.5 – Interpret the Coefficients and Measuring Marginal Effects. 51
o Topic 5.6 – Generalizing Hypothesis Test and Quality of Fit. 54
,Topic 6 – Limited Dependent Variables II. Wooldridge Chapter 17.3–17.5.
o Topic 6.1 – The Poisson Regression Model. 59
o Topic 6.2 – Truncated Regression Models. 62
o Topic 7.1 – Incidental Truncation (Sample Selection) Models. 67
o Topic 7.2 – Censored Regression Models. 73
o Topic 7.3 – The Tobit Model for Corner Solution Responses I . 76
Topic 8 – Limited Dependent Variables IV and Regression with Time Series I.
Wooldridge Chapter 17.2 and 10.1–10.3.
o Topic 8.1 – The Tobit Model for Corner Solution Responses II. 80
o Topic 8.2 – Time Series Regression Models. 87
Topic 9 – Regression with Time Series II. Wooldridge Chapter 10, and 11.1–11.3 &
Stock and Watson Chapter 15 and 16.
o Topic 9.1 – OLS Finite Sample Properties in Time Series Regressions. 90
o Topic 9.2 – Functional Forms, Dummy Variables, Trends, Seasonality. 92
o Topic 9.3 – Stationarity and Weak Dependence. 95
o Topic 9.4 – Asymptotic Properties of OLS. 97
o Topic 9.5 – Highly Persistent Time Series. 98
Topic 10 – Serial Correlation and Heteroskedasticity. Wooldridge Chapter 12 &
Stock and Watson Chapter 16.
o Topic 10.1 – Properties of OLS with Serially Correlated Errors. 101
o Topic 10.2 – Serial Correlation-Robust Inference with OLS. 104
o Topic 10.3 – Heteroskedasticity in Time Series Regressions. 106
o Topic 10.4 – Testing for Serial Correlation. 107
, Quantitative Economics and Econometrics – ECON0019 Rodrigo Antón García
ECON0019: QUANTITATIVE ECONOMICS AND ECONOMETRICS – TERM 2
Topic 1 – Potential Outcomes and Experiments. Wooldridge Chapter 2–7a and 3–
7e & Stock and Watson Chapter 13.1–13.3.
o Topic 1.1 – Econometrics of Causality and Experiments.
• Why Regressions?
Regressions estimate associations between variables (specifically, the conditional
expectation). Economists are interested in regression for various reasons, some are:
1. To predict ! from "! , . . . , "" . Actually, this is rarely used in economic research.
Prediction is not something economists, in general, are precisely interested in. This is
more an issue of traders or central banks.
2. To estimate parameters of “structural” equations. For example, the demand
elasticity in a demand equation. This is something regression is used for but not a
particular easy use of regressions. This will be discussed later in three weeks.
3. To estimate causal effects of policies, interventions, treatments. For example, of
a smaller class size on test scores; or of a job training program on future wages.
We will now center on this third application of regressions. But first, what does “causal”
mean? When/why is regression appropriate? With which controls?
• Defining Causal Effects.
In the simplest case, we are interested in evaluating an intervention or policy that has
only two states of the world: a unit is subjected to the intervention or not. In other words,
those not subject to the intervention or new policy act as a control group and those
subject to the intervention as the treatment group.
Therefore, we consider some population and assume the treatment status " is binary:
1 = if treated (e.g., a person goes through job training), 0 = if not treated.
If we then define causal effects by an abstraction called potential outcomes, for each unit
) in the population there are outcomes in both states of the world, !# and !! .
- !# = outcome without intervention.
- !! = outcome with an intervention.
- *+$ = !! − !# = causal effect (usually a random variable, may vary across units).
There are a couple of noteworthy items about the casual effect *%$ ,
- It is not observed for any unit ) because it depends on both counterfactuals.
- Second, it can be negative, zero, or positive. It could be that the causal effect is
negative for some units and positive for others.
1
Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:
Garantiert gute Qualität durch Reviews
Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.
Schnell und einfach kaufen
Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.
Konzentration auf den Kern der Sache
Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.
Häufig gestellte Fragen
Was bekomme ich, wenn ich dieses Dokument kaufe?
Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.
Zufriedenheitsgarantie: Wie funktioniert das?
Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.
Wem kaufe ich diese Zusammenfassung ab?
Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer EconEliteNotes. Stuvia erleichtert die Zahlung an den Verkäufer.
Werde ich an ein Abonnement gebunden sein?
Nein, du kaufst diese Zusammenfassung nur für 18,50 €. Du bist nach deinem Kauf an nichts gebunden.