100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
Solutions Manual For Fluid Mechanics: Fundamentals and Applications 3rd Edition By Yunus A. Çengel & John M. Cimbala || All Chapters | Latest & Updated Version 2024 12,76 €   In den Einkaufswagen

Prüfung

Solutions Manual For Fluid Mechanics: Fundamentals and Applications 3rd Edition By Yunus A. Çengel & John M. Cimbala || All Chapters | Latest & Updated Version 2024

1 bewertung
 188 mal angesehen  2 mal verkauft
  • Kurs
  • Hochschule
  • Book

Solutions Manual For Fluid Mechanics: Fundamentals and Applications 3rd Edition By Yunus A. Çengel & John M. Cimbala || All Chapters | Latest & Updated Version 2024 Solutions Manual for Fluid Mechanics: Fundamentals and Applications Third Edition Yunus A. Çengel & John M. Cimbala McGraw-Hill...

[ Mehr anzeigen ]

vorschau 4 aus 1445   Seiten

  • 21. mai 2024
  • 1445
  • 2023/2024
  • Prüfung
  • Fragen & Antworten

1  bewertung

review-writer-avatar

von: sergemuenger • 3 Monate vor

reply-writer-avatar

von: TestsBanks • 3 Monate vor

Thank you for the positive review. If you're Looking for Any Study Materials (exams, test bank, ATI, Hesi etc.) Contact me , we’re looking forward to hear from you soon! & HAVE A GREAT DAY!!!!!!!

avatar-seller
, Chapter 1 Introduction and Basic Concepts


Solutions Manual for
Fluid Mechanics: Fundamentals and Applications
Third Edition
Yunus A. Çengel & John M. Cimbala
McGraw-Hill, 2013




CHAPTER 1
INTRODUCTION AND BASIC CONCEPTS




PROPRIETARY AND CONFIDENTIAL

This Manual is the proprietary property of The McGraw-Hill Companies, Inc.
(“McGraw-Hill”) and protected by copyright and other state and federal laws. By
opening and using this Manual the user agrees to the following restrictions, and if the
recipient does not agree to these restrictions, the Manual should be promptly returned
unopened to McGraw-Hill: This Manual is being provided only to authorized
professors and instructors for use in preparing for the classes using the affiliated
textbook. No other use or distribution of this Manual is permitted. This Manual
may not be sold and may not be distributed to or used by any student or other
third party. No part of this Manual may be reproduced, displayed or distributed
in any form or by any means, electronic or otherwise, without the prior written
permission of McGraw-Hill.




1-1
PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and
educators for course preparation. If you are a student using this Manual, you are using it without permission.

, Chapter 1 Introduction and Basic Concepts

Introduction, Classification, and System


1-1C
Solution We are to define a fluid and how it differs between a solid and a gas.

Analysis A substance in the liquid or gas phase is referred to as a fluid. A fluid differs from a solid in that a
solid can resist an applied shear stress by deforming, whereas a fluid deforms continuously under the influence of shear
stress, no matter how small. A liquid takes the shape of the container it is in, and a liquid forms a free surface in a larger
container in a gravitational field. A gas, on the other hand, expands until it encounters the walls of the container and fills
the entire available space.

Discussion The subject of fluid mechanics deals with ball fluids, both gases and liquids.



1-2C
Solution We are to determine whether the flow of air over the wings of an aircraft and the flow of gases through a jet
engine is internal or external.

Analysis The flow of air over the wings of an aircraft is external since this is an unbounded fluid flow over a
surface. The flow of gases through a jet engine is internal flow since the fluid is completely bounded by the solid surfaces
of the engine.

Discussion If we consider the entire airplane, the flow is both internal (through the jet engines) and external (over the
body and wings).



1-3C
Solution We are to define incompressible and compressible flow, and discuss fluid compressibility.

Analysis A fluid flow during which the density of the fluid remains nearly constant is called incompressible flow.
A flow in which density varies significantly is called compressible flow. A fluid whose density is practically independent
of pressure (such as a liquid) is commonly referred to as an “incompressible fluid,” although it is more proper to refer to
incompressible flow. The flow of compressible fluid (such as air) does not necessarily need to be treated as compressible
since the density of a compressible fluid may still remain nearly constant during flow – especially flow at low speeds.

Discussion It turns out that the Mach number is the critical parameter to determine whether the flow of a gas can be
approximated as an incompressible flow. If Ma is less than about 0.3, the incompressible approximation yields results that
are in error by less than a couple percent.



1-4C
Solution We are to define internal, external, and open-channel flows.

Analysis External flow is the flow of an unbounded fluid over a surface such as a plate, a wire, or a pipe. The flow
in a pipe or duct is internal flow if the fluid is completely bounded by solid surfaces. The flow of liquids in a pipe is
called open-channel flow if the pipe is partially filled with the liquid and there is a free surface, such as the flow of
water in rivers and irrigation ditches.

Discussion As we shall see in later chapters, different approximations are used in the analysis of fluid flows based on
their classification.




1-2
PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and
educators for course preparation. If you are a student using this Manual, you are using it without permission.

, Chapter 1 Introduction and Basic Concepts
1-5C
Solution We are to define the Mach number of a flow and the meaning for a Mach number of 2.

Analysis The Mach number of a flow is defined as the ratio of the speed of flow to the speed of sound in the
flowing fluid. A Mach number of 2 indicate a flow speed that is twice the speed of sound in that fluid.

Discussion Mach number is an example of a dimensionless (or nondimensional) parameter.



1-6C
Solution We are to discuss if the Mach number of a constant-speed airplane is constant.

Analysis No. The speed of sound, and thus the Mach number, changes with temperature which may change
considerably from point to point in the atmosphere.



1-7C
Solution We are to determine if the flow of air with a Mach number of 0.12 should be approximated as
incompressible.

Analysis Gas flows can often be approximated as incompressible if the density changes are under about 5 percent,
which is usually the case when Ma < 0.3. Therefore, air flow with a Mach number of 0.12 may be approximated as being
incompressible.

Discussion Air is of course a compressible fluid, but at low Mach numbers, compressibility effects are insignificant.



1-8C
Solution We are to define the no-slip condition and its cause.

Analysis A fluid in direct contact with a solid surface sticks to the surface and there is no slip. This is known as
the no-slip condition, and it is due to the viscosity of the fluid.

Discussion There is no such thing as an inviscid fluid, since all fluids have viscosity.



1-9C
Solution We are to define forced flow and discuss the difference between forced and natural flow. We are also to
discuss whether wind-driven flows are forced or natural.

Analysis In forced flow, the fluid is forced to flow over a surface or in a tube by external means such as a pump or a
fan. In natural flow, any fluid motion is caused by natural means such as the buoyancy effect that manifests itself as the rise
of the warmer fluid and the fall of the cooler fluid. The flow caused by winds is natural flow for the earth, but it is
forced flow for bodies subjected to the winds since for the body it makes no difference whether the air motion is caused
by a fan or by the winds.

Discussion As seen here, the classification of forced vs. natural flow may depend on your frame of reference.




1-3
PROPRIETARY MATERIAL. © 2013 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and
educators for course preparation. If you are a student using this Manual, you are using it without permission.

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer TestsBanks. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für 12,76 €. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 14 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf

Kürzlich von dir angesehen


12,76 €  2x  verkauft
  • (1)
  Kaufen