100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
TOPOLOGIES ON GROUPS DETERMINED BY SEQUENCES: ANSWERS TO SEVERAL QUESTIONS OF I.PROTASOV AND E.ZELENYUK 13,64 €   In den Einkaufswagen

Prüfung

TOPOLOGIES ON GROUPS DETERMINED BY SEQUENCES: ANSWERS TO SEVERAL QUESTIONS OF I.PROTASOV AND E.ZELENYUK

 10 mal angesehen  0 mal verkauft
  • Kurs
  • TOPOLOGIES ON GROUPS DETERMINED
  • Hochschule
  • TOPOLOGIES ON GROUPS DETERMINED

Abstract. Answering questions of Protasov and Zelenyuk we prove the following results: 1. For every increasing function f : N → N with limn→∞ f(n + 1) − f(n) = ∞ and every metrizable totally bounded group topology τ on Z there exists a convergent to zero sequence (an)n∈ω in (Z, τ...

[ Mehr anzeigen ]

vorschau 2 aus 7   Seiten

  • 24. august 2024
  • 7
  • 2024/2025
  • Prüfung
  • Fragen & Antworten
  • TOPOLOGIES ON GROUPS DETERMINED
  • TOPOLOGIES ON GROUPS DETERMINED
avatar-seller
TOPOLOGIES ON GROUPS DETERMINED BY SEQUENCES:
ANSWERS TO SEVERAL QUESTIONS
arXiv:1011.4554v1 [math.GN] 20 Nov 2010




OF I.PROTASOV AND E.ZELENYUK




Taras Banakh


Abstract. Answering questions of Protasov and Zelenyuk we prove the following
results:
1. For every increasing function f : N → N with limn→∞ f (n + 1) − f (n) = ∞ and
every metrizable totally bounded group topology τ on Z there exists a convergent
to zero sequence (an )n∈ω in (Z, τ ) such that limn→∞ fa(n)
n
= 1.
a
2. For every real r > 1 there exists a sequence (an )n∈ω ⊂ Z such that limn→∞ n+1
an
=
r but there is no ring topology τ on Z such that (an )n∈ω converges to zero in
(Z, τ ).
3. There exists a countable topological Abelian group G determined by a T -sequence
and containing a closed subgroup H which is not determined by a T -sequence but
is homeomorphic to G.
4. There exist two group topologies τ1 , τ2 determined by T -sequences on Z such that
the topology τ1 ∨ τ2 is not complete and thus is not determined by a T -sequence.
5. There exists a countable Abelian group admitting a group topology τ determined
by a T -sequence and a metrizable group topology τ ′ such that the topology τ ∨ τ ′
is not discrete but contains no non-trivial convergent sequence.




In this note we give answers to several problems posed by I.Protasov and E.Zelenyuk
in [PZ1 ] and [PZ2 ]. Following [PZ2 ] we define a sequence (an )n∈ω of elements of
a group G to be a T -sequence if (an )n∈ω converges to zero in some non-discrete
Hausdorff group topology on G. Given a T -sequence (an )n∈ω in G we denote by
(G|(an )) the group G endowed with the strongest topology in which the sequence
(an ) converges to zero. We say that a topological group G is determined by a
T -sequence if G = (G|(an )) for some T -sequence (an )n∈ω in G.

1991 Mathematics Subject Classification. 22A05, 26A12, 54H11.
Research supported in part by grant INTAS-96-0753.

Typeset by AMS-TEX
1

, 2 TARAS BANAKH

1. There is no restriction on the growth of T -sequences in Z
All T -sequences of integers constructed in [PZ1 ] have exponential growth. This
led I.Protasov and E.Zelenyuk to the following question (see [PZ2 ] and [PZ1 , Ques-
tion 2.2.3]): is there a monotone T -sequence of integers having polynomial growth?
First our result answers this question affirmatively. We recall that a group topology
τ on a group G is called totally bounded if for every neighborhood U ∈ τ of zero in
G there exists a finite subset F ⊂ G with G = F · U .
Theorem 1.
(1) If (an )∞
n=1 ⊂ Z is an increasing T -sequence, then limn→∞ (an+1 − an ) = ∞.
(2) Suppose f : N → N and ε : N → [0, ∞) are functions such that limn→∞ ε(n) =
∞ and limn→∞ f (n + 1) − f (n) = ∞. For every metrizable totally bounded
group topology τ on Z there exists a converging to zero sequence (an )n∈ω ⊂
(Z, τ ) such that limn→∞ fa(n)
n
= 1 and |an − f (n)| ≤ ε(n) for every n ∈ ω.

Proof. 1. Suppose (an )n∈ω ⊂ Z is an increasing T -sequence with limn→∞ an+1 −
an 6= ∞. This means that for some C ∈ N and every n ∈ N we can find m ≥ n with
am+1 − am ≤ C. Let τ be a non-discrete Hausdorff group topology on Z such that
(an )∞
n=1 converges to zero in τ . Pick a τ -open neighborhood U ⊂ Z of zero such
that U ∩ (i + U ) = ∅ for every 1 ≤ i ≤ C and find n0 ∈ N such that an ∈ U for every
n ≥ n0 . By the choice of the constant C, there exists m ≥ n0 with am+1 − am ≤ C.
Then letting i = am+1 −am , we get am+1 = am +i ∈ (i+U )∩U = ∅, a contradiction.
2. Suppose functions f and ε satisfy thephypotheses of the theorem. Without loss
of generality, ε(1) = 0 and ε(n) ≤ 12 min{ f (n), f (n + 1) − f (n), f (n) − f (n − 1)}
for n > 1.
Let τ be any metrizable totally bounded group topology on Z and Z = U0 ⊃
U1 ⊃ U2 ⊃ . . . be a countable base of neighborhoods of zero in (Z, τ ). For every
n ∈ ω let k(n) = max{i ∈ ω : Ui ∩ [f (n) − ε(n), f (n) + ε(n)] 6= ∅} and an be
any point in Uk(n) ∩ [f (n) − ε(n), f (n) + ε(n)] (the number k(n) is finite since
the topology τ is Hausdorff). Evidently, |f (n) − an | ≤ ε(n) for every n ∈ ω and
0 ≤ limn→∞ fa(n) n
− 1 ≤ limn→∞ fε(n)(n) ≤ limn→∞
√ 1 = 0.
f (n)
It remains to verify the convergence of the constructed sequence (an )n∈ω to zero
in the topology τ . This will follow as soon as we prove that limn→∞ k(n) = ∞.
Fix any number m ∈ N. We have to find n0 ∈ N such that k(n) ≥ m for every
n ≥ n0 . Using the total boundedness of the topology τ , find l ∈ N such that
S
|i|<l (i + Um ) = Z. Since limn→∞ ε(n) = ∞, there exists n0 ∈ N such that
ε(n) > l for all n ≥ n0 . It follows that for every n ≥ n0 there exists i ∈ Z such that
|i| < l < ε(n) and i + Um ∋ f (n). Consequently, Um ∩ [f (n) − ε(n), f (n) + ε(n)] 6= ∅
and hence k(n) ≥ m. 
Remark 1. The requirement of the metrizability of the topology τ in Theorem 1 is
essential: according to [PZ1 , §5.1], there exists a totally bounded group topology τ
on Z such that the space (Z, τ ) contains no nontrivial convergent sequence.

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer StudyCenter1. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für 13,64 €. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 14 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf

Kürzlich von dir angesehen


13,64 €
  • (0)
  Kaufen