100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
Summary Advanced Research Methods - everything 15,49 €   In den Einkaufswagen

Zusammenfassung

Summary Advanced Research Methods - everything

1 bewertung
 50 mal angesehen  3 mal verkauft
  • Kurs
  • Hochschule

This is a summary of the course Advanced Research Methods of the master HCM. It contains all lectures and notes, summary of all literature, all workgroups and everything we discussed during the workgroup, and answers of the PC-labs.

vorschau 4 aus 135   Seiten

  • 4. september 2024
  • 135
  • 2023/2024
  • Zusammenfassung

1  bewertung

review-writer-avatar

von: estherreurink • 2 Monate vor

avatar-seller
Advanced Research Methods
Knowledge video; Directed Acyclic Graphs

Learning goals:
After watching this knowledge video you will be able to:
- Understand DAG terminology
- Apply DAG rules to answer a research question
> You will be able to determine the effect of one variable to another, without the influence of
other disruptive variables.

DAG theory;
Directed Acyclic Graphs (DAGs) are graphical representations of the causal structure underlying a
research question.
Going to the gym (exposure X) → Health (outcome Y).
But you also need to know: diet, lifestyle and disease. This can affect the relation between X and Y. In
order to examine the relation unbiased, you need to account to this matter. You have to remove the
disruptive variables.

- DAGs help to visualize the causal structure underlying a research question
- You need a priori theoretical / subject knowledge about the causal structure to draw a DAG
(e.g., from previous studies, literature, common sense).
- Collect data on all relevant variables
- ‘Simple’ rules can be applied to determine for which variables to adjust in regression analysis
and how to interpret the results.

DAG terminology
1. Paths
2. Causal paths and backdoor paths
3. Open and closed paths, and colliders
4. Blocking open paths
5. Opening blocked paths

1. Paths
RQ: Influence of X on Y?




• A path is any route between exposure X and outcome Y. They always relate directly to the
research question. They follow any route between X and Y.
• Paths do not have to follow the direction of the arrows.
Q: How many paths are there between exposure X and outcome Y?
A: 4 paths from X and Y

,In this DAG the structure that underlies the research question, is described by 4 paths. We are only
interest in the relation between X and Y, having data of all the paths is important to describe the
relation in an unbiased matter.

2. Causal paths and backdoor paths
RQ: Influence of X on Y?




• A causal path follows the direction of the arrows
• A backdoor path does not
Q: Which are causal or backdoor paths?
A: 2 causal paths (X -> Y) (X -> V -> Y)
2 backdoor paths (X <- L -> Y) (X -> W <- Y)

3. Open and closed paths
RQ: Influence of X on Y?




Regardless of paths are causal or backdoor.
• All paths are open, unless they collide somewhere on a path (in a variable, on a path between
X and Y).
• A path is closed if arrows collide in one variable on that path (that variable is called a collider)
Q: How many of the four paths that we have identified are open and how many are closed?
A: 3 open paths, 1 closed path

4. Blocking open paths
RQ: Influence of X on Y?

, • Open (causal or backdoor) paths transmit association (association = relationship)
• The association between X and Y consists of the combination of all open paths between them
• Here: all paths except X -> W <- Y (because W is a collider)




To examine the direct association between X and Y, we need to remove all variables that are not
directly relevant and only disruptive, by blocking those open paths.
• An open path is blocked when we adjust for a variable (L) along the way
• This means that we remove the disruptive influence of L from the association between X and
Y
• How? By including variable L in the regression analysis
• Backdoor paths always need to be closed
• Causal paths need to be open/ closed depending on RQ

5. Open blocked paths
RQ: Influence of X on Y?




• Including a collider (W) in the analysis means you open the blocked backdoor path. This will
disrupt the association.
• This introduces bias in the association between X and Y. To obtain a unbiased effect, you need
to close the backdoor path. For example by removing a collider, or you can include another
variable that can close the path again.

Key points;
After watching this knowledge video you are expected to:
- Understand DAG terminology
- Be able to apply DAG rules to answer a research question in an unbiased manner (block
backdoor paths!).

, Lecture 1.2; Introduction to causal inference

Learning goals;
After lecture 1.2 you will be able to:
- Explain the potential outcomes approach in causal inference
- Apply the approach in critical thinking about causal effect estimation
- Define ‘causal effect’
- Apply the concepts of consistency, positivity, and exchangeability in randomised and
observation trials

Causal claims are everywhere (papers. magazine etc. )
Is the powder really that good?
‘Improves the quality of you skin’ implies a causal effect
- A leads to B
- Use of the True Match Minerals powder leads to a better skin

Question: Would you buy the powder?
- Is the scientific evidence convincing?
- What are arguments for and against buying the powder?
➢ Small sample size
> Is this always a problem? Depends on research question
➢ Study performed or financed by commercial company
> Is this always a problem?
➢ No control group: very important
> Essential data missing
> What would happen without treatment?
> Potential regression to the mean

What do we want to know?
In causal inference:
- We are not interested in the outcome per se (i.e. 70% less imperfection), but…
- We are interested in the role of the treatment in achieving this outcome (i.e. without True
Match Minerals powder, would there have been less skin imperfections?)
Conclusion:
We do not have that information
No causal claim can be made based on the study of Oreal

Causal effect
Formal definition by Hernan and Robins;
‘In an individual, a treatment has a causal effect if the outcome under treatment 1 would be different
from the outcome under treatment 2’
To asses this, we need information on:
➔ What would have happened?
➔ What will happen?

Assume that we know what would have happened in the Oreal study:
- Women A treated with True Match Minerals powder: 2 bad sports
- Had women A not been treated with True Match Minerals: 5 bad spots
➔ Individual treatment effect: -3 spots (or 60% less imperfections)
➔ Average treatment effect: average of individual effects in a population

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer lisamichiels2. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für 15,49 €. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 14 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf
15,49 €  3x  verkauft
  • (1)
  Kaufen