100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
MAXIMA AND MINIMA QUESTION 7,81 €   In den Einkaufswagen

Prüfung

MAXIMA AND MINIMA QUESTION

 1 ansicht  0 mal verkauft
  • Kurs
  • Hochschule

this pdf contains maxima and minima questions with solution , from basic level to good level questions.

vorschau 4 aus 100   Seiten

  • 9. september 2024
  • 100
  • 2024/2025
  • Prüfung
  • Fragen & Antworten
  • Mittelschule
  • 1
avatar-seller
18. Maxima and Minima
Exercise 18.1
1. Question

Find the maximum and the minimum values, if any, without using derivatives of the following functions:

f(x) = 4x2 – 4x + 4 on R

Answer

f(x) = 4x2 – 4x + 4 on R

= 4x2 – 4x + 1 + 3

= (2x – 1)2 + 3

Since, (2x – 1)2 ≥0

= (2x – 1)2 + 3 ≥3

= f(x) ≥ f


Thus, the minimum value of f(x) is 3 at x =

Since, f(x) can be made large. Therefore maximum value does not exist.

2. Question

Find the maximum and the minimum values, if any, without using derivatives of the following functions:

f(x) = –(x – 1)2 + 2 on R

Answer

We have f(x) = – (x – 1)2 + 2

It can be observed that (x – 1)2≥0 for every x∈R

Therefore, f(x) = – (x – 1)2 + 2≤2 for every x∈R

The maximum value of f is attained when (x – 1) = 0

(x – 1)=0, x=1

Since, Maximum value of f = f(1) = – (1 – 1)2 + 2 = 2

Hence, function f does not have minimum value.

3. Question

Find the maximum and the minimum values, if any, without using derivatives of the following functions:

f(x) = |x + 2| on R

Answer

|x + 2|≥0 for x ∈ R

= f(x) ≥ 0 for all x ∈ R

So the minimum value of f(x) is 0, which attains at x =2

Hence, f(x) = |x + 2| does not have the maximum value.

4. Question

Find the maximum and the minimum values, if any, without using derivatives of the following functions:

,f(x) = sin 2x + 5 on R

Answer

We know that – 1 ≤ sin2x ≤ 1

= – 1 + 5 ≤ sin2x + 5 ≤ 1 + 5

= 4 ≤ sin 2x + 5 ≤ 6

Hence, the maximum and minimum value of h are 4 and 6 respectively.

5. Question

Find the maximum and the minimum values, if any, without using derivatives of the following functions:

f(x) = |sin 4x + 3| on R

Answer

We know that – 1 ≤ sin4x ≤ 1

= 2 ≤ sin4x + 3 ≤ 4

= 2 ≤ |sin 4x + 3| ≤ 4

Hence, the maximum and minimum value of f are 4 and 2 respectively.

6. Question

Find the maximum and the minimum values, if any, without using derivatives of the following functions:

f(x) = 2x3 + 5 on R

Answer

We have f(x) = 2x3 + 5 on R

Here, we observe that the values of f(x) increase when the values of x are increased and f(x) can be made
large,

So, f(x) does not have the maximum value

Similarly, f(x) can be made as small as we want by giving smaller values to x.

So, f(x) does not have the minimum value.

7. Question

Find the maximum and the minimum values, if any, without using derivatives of the following functions:

f(x) = – |x + 1| + 3 on R

Answer

We know that – |x + 1| ≤ 0 for every x ∈ R.

Therefore, g(x) = – |x + 1| + 3 ≤ 3 for every x ∈ R.

The maximum value of g is attained when |x + 1| = 0

|x + 1| = 0

x=–1

Since, Maximum Value of g = g( – 1) = – | – 1 + 1| + 3 = 3

Hence, function g does not have minimum value.

8. Question

Find the maximum and the minimum values, if any, without using derivatives of the following functions:

f(x) = 16x2 –16x + 28 on R

,Answer

We have f(x) = 16x2 – 16x + 28 on R

= 16x2 – 16x + 4 + 24

= (4x – 2)2 + 24

Now, (4x – 2)2 ≥ 0 for all x ∈ R

= (4x – 2)2 + 24≥ 24 for all x ∈ R

= f(x) ≥ f


Thus, the minimum value of f(x) is 24 at x =

Hence, f(x) can be made large as possibly by giving difference value to x.

Thus, maximum values does not exist.

9. Question

Find the maximum and the minimum values, if any, without using derivatives of the following functions:

f(x) = x3 – 1 on R

Answer

We have f(x) = x3 – 1 on R

Here, we observe that the values of f(x) increase when the values of x are increased, and f(x) can be made
large, by giving large value.

So, f(x) does not have the maximum value

Similarly, f(x) can be made as small as we want by giving smaller values to x.

So, f(x) does not have the minimum value.

Exercise 18.2
1. Question

Find the points of local maxima or local minima, if any, of the following functions, using the first derivative
test. Also, find the local maximum or local minimum values, as the case may be:

f(x) = (x – 5)4

Answer

f(x) = (x – 5)4

Differentiate w.r.t x

f ’(x) = 4(x – 5)3

for local maxima and minima

f ‘ (x) = 0

= 4(x – 5)3 = 0

=x–5=0

x=5

f ‘ (x) changes from –ve to + ve as passes through 5.

So, x = 5 is the point of local minima

, Thus, local minima value is f(5) = 0

2. Question

Find the points of local maxima or local minima, if any, of the following functions, using the first derivative
test. Also, find the local maximum or local minimum values, as the case may be:

f(x) = x3 – 3x

Answer

We have, g (x) = x3 – 3x

Differentiate w.r.t x then we get,

g’ (x) = 3x2 – 3

Now, g‘(x) =0

= 3x2 = 3 ⇒ x = ±1

Again differentiate g’(x) = 3x2 – 3

g’’(x)= 6x

g’’(1)= 6 > 0

g’’( – 1)= – 6>0

By second derivative test, x=1 is a point of local minima and local minimum value of g at

x =1 is g(1) = 13 – 3 = 1 – 3 = – 2

However, x = – 1 is a point of local maxima and local maxima value of g at

x = – 1 is g( – 1) = ( – 1)3 – 3( – 1)

=–1+3

=2

Hence, The value of Minima is – 2 and Maxima is 2.

3. Question

Find the points of local maxima or local minima, if any, of the following functions, using the first derivative
test. Also, find the local maximum or local minimum values, as the case may be:

f(x) = x3 (x – 1)2

Answer

We have, f(x) = x3(x – 1)2

Differentiate w.r.t x, we get,

f ‘(x) = 3x2(x – 1)2 + 2x3(x – 1)

= (x – 1)(3x2(x – 1) + 2x3)

= (x – 1)(3x3 – 3x2 + 2x3)

= (x – 1)(5x3 – 3x2)

= x2 (x – 1)(5x – 3)

For all maxima and minima,

f ’(x) = 0

= x2(x – 1)(5x – 3) = 0

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer sunny10. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für 7,81 €. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 14 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf
7,81 €
  • (0)
  Kaufen