100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
Econometrics Unit 1 Study Guide || very Flawless. 14,16 €   In den Einkaufswagen

Prüfung

Econometrics Unit 1 Study Guide || very Flawless.

 7 mal angesehen  0 mal verkauft
  • Kurs
  • Econometrics Unit 1 Study
  • Hochschule
  • Econometrics Unit 1 Study

1. What is a dummy/binary/indicator variable? 2. What are the 2 types of data? 3. What is econometrics? 4. What are the 2 branches of statistics? correct answers 1. Takes values of 0 or 1 to indicate whether some condition is met 0 = no 1 = yes 2. i. Experimental = researcher manipulates th...

[ Mehr anzeigen ]

vorschau 4 aus 34   Seiten

  • 10. september 2024
  • 34
  • 2024/2025
  • Prüfung
  • Fragen & Antworten
  • Econometrics Unit 1 Study
  • Econometrics Unit 1 Study
avatar-seller
Econometrics Unit 1 Study Guide || very Flawless.
1. What is a dummy/binary/indicator variable?
2. What are the 2 types of data?
3. What is econometrics?
4. What are the 2 branches of statistics? correct answers 1. Takes values of 0 or 1 to indicate
whether some condition is met
0 = no
1 = yes

2. i. Experimental = researcher manipulates the values to see the effect
--> Hard to run large experiments

ii. Observational = real world observations of how variables relate to each other (most of econ)

3. Econometrics = statistical analysis + economic theory

4. 2 branches:
i. Descriptive stat (sample): presenting characteristics of a sample
ii. Inferential stat (population: guessing properties of the population

1. What is a population?
2. What is a parameter?
3. What is a sample?
4. What is a statistic? correct answers 1. Population = group of interest to researcher
2. Parameter = values from the population

3. Sample = subset of population that is available to researcher (what we look at as representative
of the population)
4. Statistic = values from the sample

1. What are the different organizations of data?
2. What are the common measures of central tendency? What do they express?
3. i.What is left skew?
ii. What is right skew?
iii. What is symmetric distribution? correct answers 1.
i. Cross Sectional- many observations observed once
ii. Time Series- single observation over time
iii. Panel data- many observations over time

2.
i. Mean, median, and mode = average, middle, most common values
ii. They express a "typical" value

3.
i. Left skew = data skewed AWAY from the left ____/\ (median > mean)

,ii. Right skew = data skewed AWAY from the right /\____ (median < mean)
--> More frequency of people with lower values than higher values!
--> ie- property values, income/wealth, etc. --> more poor people and tiny number of rich people
who accumulated wealth through theft lol
iii. Symmetric distribution = data is symmetric __/\__ (median = mean)
--> Less frequency of people with higher values than higher values!
--> ie- distribution of scores on tests

What is the Rule of 72? How is it calculated?
ie- I save money with interest rate of 6% per year. How many years until it doubles? correct
answers Quick way to calculate length of time to double something (typically money):
*72/interest rate*

ie- I save money with interest rate of 6% per year. How many years until it doubles?
Answer: 72/6 = 12 years to double

What are the 3 types of means within classical mathematics? correct answers i. *Arithmetic
mean* = sum of all observations/# of observations
--> Doesn't always work well
--> ie-to beach = 75 mph (150 mi distance; 2 hours)
-from beach = 25 mph (150 mi distance; 8 hours)
--> Total distance = 300 miles in 8 hours--> 300/8 = *actual average speed is 37.5 mph* --> this
is actually using the harmonic mean!

ii. *Geometric mean* = (product of all observations)^(1/# of observations)
--> For growth rates (R=decimal): [(1+R1)(1+R2)...(1+Rn)]^(1/n)]-1

-->) [$100(1+R1)(1+R2)(1+Rn)] = $100(1+R bar)(1+R bar)
--> Rn = decimal form
--> R bar = average interest rate
--> *1+R bar = Sq. Root N[(1+R1)(1+R2)...(1+Rn)]*
--> N = # of observations

--> ie- I'm saving for college. I put $100 into mutual fund with variable rate fo return. I gain 20%
in year 1; lose 20% in year 2. What is the average rate of return?
--> Year 1 = +20% (100 + (0.2x100) = now have $120 in account)
--> Year 2 = -20% (120 - (0.2x120) = now have $96 in account)

--> [$100(1+0.2)(1-0.2)] = $100(1+rate)(1+rate)--> 0.96 = (!+R bar)^2


iii. *Harmonic mean* = sum of all reciprocals of values/# of observations, take reciprocal of that
--> [(1/X1 + 1/X2 + ...1/Xn)/N]^(-1)
--> N = # observations
--> X = each value within N
--> Not uncommon; used for averaging ratios (ie- fuel efficiency, CPI for inflation, etc.)

,--> ie-to beach = 75 mph (150 mi distance; 2 hours)
-from beach = 25 mph (150 mi distance; 8 hours)
--> Harmonic mean = [(1/75 + 1/25)/2]^(-1) = *37.5 mph*

--> ie- Car A = 20 miles per gallon; Car B = 40 miles per gallon
Average miles/gallon = ?
--> I drive each car for 80 miles--> 160 miles total for 6 gallons total
--> 160 gallons on 6 gallons--> *avg miles/gallon = 26.69 mpg*
OR using harmonic mean:
--> [(1/20 + 1/40)/2]^(-1) = 26.69 mpg!

1. What are the intent of measures of dispersion?
2. What are the most common measures of this? correct answers 1. These statistics describe
whether values = clustered together or spread out

2. Most common measures =

i. *Standard deviation(population)/variance(sample)*:
--> Variance(u) = [(x1-mean)^2+(x2-mean)^2+(xn-mean)^2]/(N-1)
--> SD(S or Sx) = sq. rt[variance]
Advantages:
i. Includes Chebyshev's inequality = within k SDs of mean, always have at least (1-1/(k^2)) of
the sample within k SDs of mean (k being # SDs away from)
--> Within 2 SDs of mean, always have at least (1-1/(2^2)) = *3/4* of sample to be within those
2 standard deviations. that's literally it
"At least this much falls within..."

ii. Empirical rule (2/3-95-99.9 rule) =
--> Within 1 SD = approx. 2/3% falls in; 1/6 on each tail do NOT fall into the 1 SD
--> Within 2 SDs = approx. 95% falls in; 2.5% on each tail do NOT fall into the 2 SDs
--> Within 3 SDs = approx. 99.9% technically falls in; 0.15% on each end do NOT fall into 3
SDs
"Approximately how much falls within..."

iii. Standardizing values = measuring how many standard deviations you are from the mean (z
score!)
--> z = (x-mean)/standard deviation = standardized the values!
--> ie = 95th percentile = 95% fall below this score; you're in top 5%


ii. *Range*:
--> Advantages: easy to use/understand
--> Disadvantages: dependent on sample size (larger sample = larger range); determined by
unusual values (the outliers); not very useful statistically

, iii. *Interquartile range (difference between 75th + 25th percentiles of distribution)*:
--> Advantages: unaffected by sample size; determined by most common path of the population
--> Disadvantages: less convenient/easy; not very useful statistically

1) What is a logarithm?
Solve the following:
i. log3^81
ii. log2^8
iii. log2^1.41
iv. log2^0.25

2) What are the properties of the logarithm?
3) What are the applications of logarithms? correct answers 1) In theory: how many times do you
multiply x by itself to get n?
logx^k = n --> x^n = k

i.- log3^81 = 4 --> 3^4 = 81
ii.- log2^8 = 3 --> 2^3 = 8
iii.- log2^1.41 = 1/2
iv. - log2^0.25 = -2

2) Same base properties (common base = e = ~2.718 = natural logarithm = ln(x)):
i. Logb(x*y) = log(x) + log(y)
ii. Logb(x^a) = a*log(x)
iii. Logb(x/y) = log(x)-log(y)

3) Applications:
i. Find % difference:
ie- 2 values of x--> x1, x2
% difference between those values =~ ln(x2)-ln(x1)
--> x1 = 95
--> x2 = 105
% difference can also be found via...
-Midpoint method = (change in x)/(1/2(x1+x2)) = 10% change
-Elasticity (% change in Q)/(% change in P) = [(new Q-old Q)/old Q]*[old P/(new P-old P)]

ii. Approximating delta:
ln(1+delta) = ~= delta (if delta is close to 0; typically within 0.2 of 0)
--> ie-ln(1.05) =~ 1.05
--> delta = 0.05
--> exact answer = 0.0488

iii. Simplifying Cobb Douglas demand function:
Q = alpha * (w/p); w = wealth
ln(Q) = ln(alpha*(w/p)) = ln(alpha) + ln(w/p) = *ln(alpha)+ln(w)=ln(P) = ln(Q)*

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer FullyFocus. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für 14,16 €. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 14 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf
14,16 €
  • (0)
  Kaufen