100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
Solution Manual for Advanced Engineering Mathematics By Erwin Kreyszig 10th Edition .Latest Edition 17,61 €   In den Einkaufswagen

Prüfung

Solution Manual for Advanced Engineering Mathematics By Erwin Kreyszig 10th Edition .Latest Edition

 20 mal angesehen  0 mal verkauft
  • Kurs
  • ADVANCED ENGINEERING MATHEMATICS
  • Hochschule
  • ADVANCED ENGINEERING MATHEMATICS
  • Book

Solution Manual for Advanced Engineering Mathematics By Erwin Kreyszig 10TH EDITION .Latest Edition

vorschau 4 aus 441   Seiten

  • 9. oktober 2024
  • 441
  • 2024/2025
  • Prüfung
  • Fragen & Antworten
  • ADVANCED ENGINEERING MATHEMATICS
  • ADVANCED ENGINEERING MATHEMATICS
avatar-seller
Solution Manuals Of
ADVANCED ENGINEERINGMATHEMATICS
By
ERWIN KREYSZIG

10TH EDITION

,Part A. ORDINARY DIFFERENTIAL
EQUATIONS (Odes)
CHAPTER 1 First-Order Odes
Major Changes
There Is More Material On Modeling In The Text As Well As In The
Problem Set. Some Additions On Population Dynamics Appear In Sec.
1.5.
Electric Circuits Are Shifted To Chap. 2, Where Second-Order Odes Will Be
Available. This Avoids Repetitions That Are Unnecessary And Practically Irrelevant.
Team Projects, CAS Projects, And CAS Experiments Are Included In Most Problem Sets.


SECTION 1.1. Basic Concepts. Modeling, Page 2
Purpose. To Give The Students A First Impression What An ODE Is And What We Mean By
Solving It.
Background Material. For The Whole Chapter We Need Integration Formulas And
Techniques, Which The Student Should Review.
General Comments
This Section Should Be Covered Relatively Rapidly To Get Quickly To The Actual
Solution Methods In The Next Sections.
Equations (1)–(3) Are Just Examples, Not For Solution, But The Student Will See
That Solutions Of (1) And (2) Can Be Found By Calculus, And A Solution Y = Ex Of (3)
By Inspection.
Problem Set 1.1 Will Help The Student With The Tasks

Of Solving Y' = Ƒ(X) By Calculus
Finding Particular Solutions From Given General Solutions
Setting Up An ODE For A Given Function As Solution
Gaining A First Experience In Modeling, By Doing One Or Two
Problems Gaining A First Impression Of The Importance Of Odes

Without Wasting Time On Matters That Can Be Done Much Faster, Once Systematic
Methods Are Available.
Comment On “General Solution” And “Singular Solution”
Usage Of The Term “General Solution” Is Not Uniform In The Literature. Some Books
Use The Term To Mean A Solution That Includes All Solutions, That Is, Both The
Particular And The Singular Ones. We Do Not Adopt This Definition For Two Reasons.
First, It Is Frequently Quite Difficult To Prove That A Formula Includes All Solutions;
Hence, This Definition Of A General Solution Is Rather Useless In Practice. Second,
Linear Differential Equations (Satisfying Rather General Conditions On The Coefficients)
Have No Singular Solutions (As Mentioned In The Text), So That For These Equations A
General Solution As Defined Does Include All Solutions. For The Latter Reason, Some
Books Use The Term “General Solution” For Linear Equations Only; But This Seems
Very Unfortunate.


1

,2 Instructor’s Manual

SOLUTIONS TO PROBLEM SET 1.1, Page 8
2. Y = —E—3x/3 + C 4. Y = (Sinh 4x) /4 + C
6. Second Order. 8. First Order.
10. Y = Ce0.5x, Y(2) = Ce = 2, C = 2/E, Y = (2/E)E0.5x = 0.736e0.5x
12. Y = Cex + X + 1, Y(0) = C + 1 = 3, C = 2, Y = 2ex + X + 1
14. Y = C Sec X, Y(0) = C/Cos 0 = C = 1_π, Y = 1_π Sec X
2 2
16. Substitution Of Y = Cx — C2 Into The ODE Gives
Y'2 — Xy' + Y = C2 — Xc + (Cx — C2) = 0.
Similarly,
Y = 1_x 2, Y' = 1_x, _1 x 2 — X(_1 x) + 1_x 2 = 0.
Thus
4 2 4 2 4

18. In Prob. 17 The Constants Of Integration Were Set To Zero. Here, By Two Integrations,
Y ” = G, V = Y' = Gt + C1, Y = _1gt 2 + C1t + C2, Y(0) = C2 = Y0,
2

And, Furthermore,
V(0) = C1 = V0, Hence Y = 2_1 gt 2 + V0 t + Y0,
As Claimed. Times Of Fall Are 4.5 And 6.4 Sec, From T = √¯
100/4.9̄ And √2
¯00/4.9̄.
20. Y' = Ky. Solution Y = Y0ekx, Where Y0 Is The Pressure At Sea Level X = 0. Now
Y(18000) = Y Ek·18000 = _1 y (Given). From This,
0 2 0

E k·18000
= 2_1 , Y(36000) = Y0 Ek·2·18000 = Y0 (Ek·18000)2 = 0Y 2(_1 )2 =4 _10y .

22. For 1 Year And Annual, Daily, And Continuous Compounding We Obtain The Values
Ya(1) = 1060.00, Yd(1) = 1000(1 + 0.06/365)365 = 1061.83,

Yc(1) = 1000e0.06 = 1061.84,
Respectively. Similarly For 5 Years,
Ya(5) = 1000 · 1.065 = 1338.23, Yd(5) = 1000(1 + 0.06/365)365·5 = 1349.83,
Yc(5) = 1000e0.06·5 = 1349.86.
We See That The Difference Between Daily Compounding And Continuous
CompoundingIs Very Small.
The ODE For Continuous Compounding Is Yc' = R Yc.

SECTION 1.2. Geometric Meaning Of Y' = Ƒ(X, Y ). Direction Fields, Page 9
Purpose. To Give The Student A Feel For The Nature Of Odes And The General
Behavior Of Fields Of Solutions. This Amounts To A Conceptual Clarification Before
Entering Into Formal
Manipulations Of Solution Methods, The Latter Being Restricted To Relatively Small—
Albeit Important—Classes Of Odes. This Approach Is Becoming Increasingly Important,
Especially Because Of The Graphical Power Of Computer Software. It Is The Analog
Of Conceptual Studies Of The Derivative And Integral In Calculus As Opposed To
Formal Techniques Of Differentiation And Integration.
Comment On Isoclines
These Could Be Omitted Because Students Sometimes Confuse Them With Solutions. In
The Computer Approach To Direction Fields They No Longer Play A Role.

, Instructor’s Manual 3

Comment On Order Of Sections
This Section Could Equally Well Be Presented Later In Chap. 1, Perhaps After One
Or Two Formal Methods Of Solution Have Been Studied.


SOLUTIONS TO PROBLEM SET 1.2, Page 11

2. Semi-Ellipse X2/4 + Y2/9 = 13/9, Y > 0. To Graph It, Choose The Y-Interval
LargeEnough, At Least 0 ÷ Y ÷ 4.
4. Logistic Equation (Verhulst Equation; Sec. 1.5). Constant Solutions Y = 0 And Y =2 _1 .
_
1 _1
For These, Y' = 0. Increasing Solutions For 0 < Y(0) < 2, Decreasing For Y(0) > 2.
6. The Solution (Not Of Interest For Doing The Problem) Is Obtained By Using

Dy/Dx = 1/(Dx/Dy) And Solving Dx/Dy = 1/(1 + Sin Y) By Integration,
X + C = —2/(Tan2 _1 Y + 1); Thus Y = —2 Arctan ((X + 2 + C) /(X + C)).

8. Linear ODE. The Solution Involves The Error Function.
12. By Integration, Y = C — 1/X.
16. The Solution (Not Needed For Doing The Problem) Of Y' = 1/Y Can Be
Obtained By Separating Variables And Using The Initial Condition; Y 2/2 = T + C,
Y = √2¯ T — 1.
18. The Solution Of This Initial Value Problem Involving The Linear ODE Y' + Y = T2 Is
Y = 4e—T + T2 — 2t + 2.
20. CAS Project. (A) Verify By Substitution That The General Solution Is Y = 1 +
Ce—X. Limit Y = 1 (Y(X) = 1 For All X), Increasing For Y(0) < 1,
Decreasing For Y(0) > 1.
(b) Verify By Substitution That The General Solution Is X4 + Y4 = C. More
“Square- Shaped,” Isoclines Y = Kx. Without The Minus On The Right You Get
“Hyperbola-Like” Curves Y4 — X4 = Const As Solutions (Verify!). The Direction
Fields Should Turn Out InPerfect Shape.
(c) The Computer May Be Better If The Isoclines Are Complicated; But The
Computer May Give You Nonsense Even In Simpler Cases, For Instance When Y(X)
Becomes Imaginary. Much Will Depend On The Choice Of X- And Y-Intervals, A
Method Of Trial And Error. Isoclines May Be Preferable If The Explicit Form Of
The ODE Contains Roots On The Right.


SECTION 1.3. Separable Odes. Modeling, Page 12
Purpose. To Familiarize The Student With The First “Big” Method Of Solving Odes,
The Separation Of Variables, And An Extension Of It, The Reduction To Separable Form
By A Transformation Of The ODE, Namely, By Introducing A New Unknown
Function.
The Section Includes Standard Applications That Lead To Separable Odes, Namely,

1. The ODE Giving Tan X As Solution
2. The ODE Of The Exponential Function, Having Various Applications, Such As In
Radiocarbon Dating
3. A Mixing Problem For A Single Tank
4. Newton’s Law Of Cooling
5. Torricelli’s Law Of Outflow.

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer kylaexcell. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für 17,61 €. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 14 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf
17,61 €
  • (0)
  Kaufen