100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Zusammenfassung

Samenvatting aadvanced research methods

Bewertung
-
Verkauft
-
seiten
82
Hochgeladen auf
14-10-2024
geschrieben in
2024/2025

Samenvatting van de qualitatieve literatuur en alle colleges

Hochschule
Kurs











Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Schule, Studium & Fach

Hochschule
Studium
Kurs

Dokument Information

Hochgeladen auf
14. oktober 2024
Anzahl der Seiten
82
geschrieben in
2024/2025
Typ
Zusammenfassung

Themen

Inhaltsvorschau

Advanced Research Methods

Knowledge clip 1

Dag theory
 Research question
o Must satisfy two conditions
 Open ended question
 Needs to include some causal language
 Dag theory
o Directed acyclic graphs are graphical representations of the
causal structure underlying a research question
 Exposure X to outcome Y





o Unbiased
 Correct for other factors such as diet and lifestyle (in this
case)
 Remove disruptive influence of other factors
o Dags
 Dags help to visualize the causal structure underlying a
research question
 You need a priori theoretical/subject knowledge about
the causal structure to draw a DAG
 E.g. from previous studies, literature, common
sense, etc.
 Collect data on all relevant variables
 Simle rules can be applied to determine for which
variables to add in regression analysis and how to
interpret the results
 Dag terminology
o Paths
 RQ: influence of x on y?
 A path is any route between exposure x and outcome y
 Paths do not have to follow the directions of the arrow

, 





o Causal paths and backdoor paths
 A causal path follows the direction of the arrows
 A backdoor path does not





o Open and closed paths, and colliders
 All paths are open, unless they collide somewhere on a
path
 A path is closed if arrows collide in one variable on that
path
 A variable in which the arrows collide = a collider

, 
o Blocking open paths
 Open (causal or backdoor) paths transmit association
 The association between x and y consists of the
combination of all open paths between them
 Here: all paths except x  w  Y
 To examine the influence of x on y, and only that, the
other associations that are not directly relevant need to
be removed > blocking those open paths
 Block those open paths  block open backdoor paths by
including a variable on that backdoor path in the
regression analysis
 An open path is blocked when we adjust for a variable L
along the …
 This means that we remove the disruptive influence of L
from the association between X and Y
 How? By including variable L in the regression analysis
 Backdoor paths always need to be closed
 Causal paths need to be open/closed depending on RQ

o Opening blocked path
 Include a collider in the analysis means you open the
blocked backdoor path
 Opening a backdoor path is disruptive for the association
between x and y  introduce bias of the influence
 Avoid bias by closing the backdoor path again  remove
the collider or add another variable that removes the
disruption

Lecture 1 causal inference
 Developments in quantitative research
o 1960-2010: focus on statistical methods
 Development of new techniques
 Improvements in computers and software
 Standardization of tests, focus on objectivity and
replicability

,  Helpful and harmful
o Since 2010: statistics is not so black and white
 Causal theory
 What (variables) should be part of a quantitative
analysis
 Statistics is not just about numbers
 Interpretation: meaning of results depends on context 
moving beyond p-value < 0.05
o Three different reasons for examining relationship between x
and y
 Description: patterns X and Y
 Prediction: Y given X
 Causal inference: Effect X on Y






o Causal inference
 Not interested in outcome per se
 Interested in the role of the treatment X on the outcome
 In an individual, a treatment has a causal effect if the
outcome under treatment 1 would be different from the
outcome under treatment 2
o Causal effect formal notation



9,16 €
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen
Seller avatar
remkegengler

Lerne den Verkäufer kennen

Seller avatar
remkegengler Radboud Universiteit Nijmegen
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
4
Mitglied seit
7 Jahren
Anzahl der Follower
4
Dokumente
9
Zuletzt verkauft
1 Jahren vor

0,0

0 rezensionen

5
0
4
0
3
0
2
0
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen