100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
Solution Manual for Applied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman 19,76 €   In den Einkaufswagen

Prüfung

Solution Manual for Applied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman

 8 mal angesehen  0 mal verkauft
  • Kurs
  • Applied Partial Differential Equations
  • Hochschule
  • Applied Partial Differential Equations

Solution Manual for Applied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman

vorschau 4 aus 83   Seiten

  • 18. oktober 2024
  • 83
  • 2024/2025
  • Prüfung
  • Fragen & Antworten
  • Applied Partial Differential Equations
  • Applied Partial Differential Equations
avatar-seller
Chapter 1. Heat Equation
Section 1.2
1.2.9 (d) Circular cross section means that P = 2πr, A = πr2 , and thus P/A = 2/r, where r is the radius.
Also γ = 0.
1.2.9 (e) u(x, t) = u(t) implies that
du 2h
cρ =− u.
dt r
The solution of this first-order linear differential equation with constant coefficients, which satisfies the
initial condition u(0) = u0 , is · ¸
2h
u(t) = u0 exp − t .
cρr

Section 1.3




R
1.3.2 ∂u/∂x is continuous if K0 (x0 −) = K0 (x0 +), that is, if the conductivity is continuous.




U
Section 1.4
1.4.1 (a) Equilibrium satisfies (1.4.14), d2 u/dx2 = 0, whose general solution is (1.4.17), u = c1 + c2 x. The




SE
boundary condition u(0) = 0 implies c1 = 0 and u(L) = T implies c2 = T /L so that u = T x/L.
1.4.1 (d) Equilibrium satisfies (1.4.14), d2 u/dx2 = 0, whose general solution (1.4.17), u = c1 + c2 x. From
the boundary conditions, u(0) = T yields T = c1 and du/dx(L) = α yields α = c2 . Thus u = T + αx.
IS
1.4.1 (f) In equilibrium, (1.2.9) becomes d2 u/dx2 = −Q/K0 = −x2 , whose general solution (by integrating
twice) is u = −x4 /12 + c1 + c2 x. The boundary condition u(0) = T yields c1 = T , while du/dx(L) = 0
yields c2 = L3 /3. Thus u = −x4 /12 + L3 x/3 + T .
O
1.4.1 (h) Equilibrium satisfies d2 u/dx2 = 0. One integration yields du/dx = c2 , the second integration
yields the general solution u = c1 + c2 x.
N

x=0: c2 − (c1 − T ) = 0
x=L: c2 = α and thus c1 = T + α.
N


Therefore, u = (T + α) + αx = T + α(x + 1).
O



1.4.7 (a) For equilibrium:
d2 u x2 du
= −1 implies u = − + c1 x + c2 and = −x + c1 .
C




dx 2 2 dx
From the boundary conditions du du
dx (0) = 1 and dx (L) = β, c1 = 1 and −L + c1 = β which is consistent
ED




2
only if β + L = 1. If β = 1 − L, there is an equilibrium solution (u = − x2 + x + c2 ). If β 6= 1 − L,
there isn’t an equilibrium solution. The difficulty is caused by the heat flow being specified at both
ends and a source specified inside. An equilibrium will exist only if these three are in balance. This
balance can be mathematically verified from conservation of energy:
M




Z Z L
d L du du
cρu dx = − (0) + (L) + Q0 dx = −1 + β + L.
dt 0 dx dx 0

If β + L = 1, then the total thermal energy is constant and the initial energy = the final energy:
Z L Z Lµ 2 ¶
x
f (x) dx = − + x + c2 dx, which determines c2 .
0 0 2

If β + L 6= 1, then the total thermal energy is always changing in time and an equilibrium is never
reached.

1

, Section 1.5
d
¡ du ¢
1.5.9 (a) In equilibrium, (1.5.14) using (1.5.19) becomes dr r dr = 0. Integrating once yields rdu/dr = c1
and integrating a second time (after dividing by r) yields u = c1 ln r + c2 . An alternate general solution
is u = c1 ln(r/r1 ) + c3 . The boundary condition u(r1 ) = T1 yields c3 = T1 , while u(r2 ) = T2 yields
c1 = (T2 − T1 )/ ln(r2 /r1 ). Thus, u = ln(r21/r1 ) [(T2 − T1 ) ln r/r1 + T1 ln(r2 /r1 )].

1.5.11 For equilibrium, the radial flow at r = a, 2πaβ, must equal the radial flow at r = b, 2πb. Thus β = b/a.
d
¡ 2 du ¢
1.5.13 From exercise 1.5.12, in equilibrium dr r dr = 0. Integrating once yields r2 du/dr = c1 and integrat-
2
ing a second time (after dividing by r ) yields u = −c1 /r + c2 . The boundary conditions ¡ u(4) ¢ = 80
and u(1) = 0 yields 80 = −c1 /4 + c2 and 0 = −c1 + c2 . Thus c1 = c2 = 320/3 or u = 320 3 1 − 1r .




R
U
SE
IS
O
N
N
O
C
ED
M




2

,Chapter 2. Method of Separation of Variables
Section 2.3
³ ´ ³ ´

2.3.1 (a) u(r, t) = φ(r)h(t) yields φ dh = kh d
r dr . Dividing by kφh yields
1 dh
= 1 d
r dφ = −λ or
³ ´ dt r dr kh dt rφ dr dr
dh 1 d dφ
dt = −λkh and r dr r dr = −λφ.
2 2 2 2
2.3.1 (c) u(x, y) = φ(x)h(y) yields h ddxφ2 + φ ddyh2 = 0. Dividing by φh yields 1 d φ
φ dx2 = − h1 ddyh2 = −λ or
d2 φ d2 h
dx2 = −λφ and dy 2 = λh.
4 4
d φ 1 d φ
2.3.1 (e) u(x, t) = φ(x)h(t) yields φ(x) dh
dt = kh(t) dx4 . Dividing by kφh, yields
1 dh
kh dt = φ dx4 = λ.
2 2 2
1 d2 h
2.3.1 (f) u(x, t) = φ(x)h(t) yields φ(x) ddt2h = c2 h(t) ddxφ2 . Dividing by c2 φh, yields c2 h dt2 = 1 d φ
φ dx2 = −λ.

2.3.2 (b) λ = (nπ/L)2 with L = 1 so that λ = n2 π 2 , n = 1, 2, . . .




R
2.3.2 (d)
√ √ dφ
(i) If λ > 0, φ = c1 cos λx + c2 sin λx. φ(0) = 0 implies c1 = 0, while dx (L) = 0 implies




U
√ √ √
c2 λ cos λL = 0. Thus λL = −π/2 + nπ(n = 1, 2, . . .).




SE
(ii) If λ = 0, φ = c1 + c2 x. φ(0) = 0 implies c1 = 0 and dφ/dx(L) = 0 implies c2 = 0. Therefore λ = 0
is not an eigenvalue.
√ √
(iii) If λ < 0, let
√ λ = −s√ and φ = c1 cosh sx + c2 sinh sx. φ(0) = 0 implies c1 = 0 and dφ/dx(L) = 0
implies c2 s cosh sL = 0. Thus c2 = 0 and hence there are no eigenvalues with λ < 0.
IS
2.3.2 (f) The simpliest method is to let x0 = x − a. Then d2 φ/dx02 + λφ = 0 with φ(0) = 0 and φ(b − a) = 0.
2
Thus (from p. 46) L = b − a and λ = [nπ/(b − a)] , n = 1, 2, . . ..
P∞
O
−k(nπ/L)2 t
2.3.3 From (2.3.30), u(x, t) = n=1 Bn sin nπxL e . The initial condition yields
P∞ 2 L
R
nπx
2 cos L = n=1 Bn sin L . From (2.3.35), Bn = L 0 2 cos 3πx
3πx nπx
L sin L dx.
N

RL P∞ 2
Bn e−k( )

t 1−cos nπ
2.3.4 (a) Total heat energy = 0
cρuA dx = cρA n=1
L
nπ , using (2.3.30) where Bn
L
N


satisfies (2.3.35).
2.3.4 (b)
O



heat flux to right = −K0 ∂u/∂x
total heat flow to right = −K0 A∂u/∂x
¯
heat flow out at x = 0 = K0 A ∂u ¯
C




¯
∂x x=0
∂u ¯
heat flow out (x = L) = −K0 A ∂x x=L
¯L
ED




d
RL ¯
2.3.4 (c) From conservation of thermal energy, dt 0
u dx = k ∂u ∂u ∂u
∂x ¯ = k ∂x (L) − k ∂x (0). Integrating from
0
t = 0 yields
Z L Z L Z t· ¸
∂u ∂u
u(x, t) dx − u(x, 0) dx = k (L) − (0) dx .
∂x ∂x
M




|0 {z } |0 {z } | 0 {z } | {z }
heat energy initial heat integral of integral of
at t energy flow in at flow out at
x=L x=L
2 p p
2.3.8 (a) The general solution of k ddxu2 = αu (α > 0) is u(x) = a cosh αk x + b sinh αk x. The boundary
condition u(0) = 0 yields a = 0, while u(L) = 0 yields b = 0. Thus u = 0.




3

, 2
d φ
2.3.8 (b) Separation of variables, u = φ(x)h(t) or φ dh
dt + αφh = kh dx2 , yields two ordinary differential
2
1 dh α 1 d φ
equations (divide by kφh): kh dt + k = φ dx2 = −λ. Applying the boundary conditions, yields the
eigenvalues λ = (nπ/L)2 and corresponding eigenfunctions φ = sin nπx L . The time-dependent part are
−λkt −αt −αt
P ∞ nπx −k(nπ/L)2 t
exponentials, h = e e . Thus by superposition, u(x, t) = e n=1 bn sin L e , where
P∞ R
2 L
the initial conditions u(x, 0) = f (x) = n=1 bn sin nπx
L yields b n = L 0 f (x) sin nπx
L dx. As t → ∞,
u → 0, the only equilibrium solution.
q q
2.3.9 (a) If α < 0, the general equilibrium solution is u(x) = a cos −α k x + b sin −α
x. The boundary
q qk
condition u(0) = 0 yields a = 0, while u(L) = 0 yields b sin −α k L = 0. Thus if
−α
k L 6= nπ, u = 0 is
q
the only equilibrium solution. However, if −α nπx
k L = nπ, then u = A sin L is an equilibrium solution.
¡ π ¢2
2.3.9 (b) Solution obtained in 2.3.8 is correct. If − αk = L , u(x, t) → b1 sin πx
L , the equilibrium solution.
α
¡ π
¢2 α
¡ π ¢2
If − k < L , then u → 0 as t → ∞. However, if − k > L , u → ∞ (if b1 6= 0). Note that b1 > 0 if
f (x) ≥ 0. Other more unusual events can occur if b1 = 0. [Essentially, the other possible equilibrium




R
solutions are unstable.]




U
Section 2.4
2.4.1 The solution is given by (2.4.19), where the coefficients satisfy (2.4.21) and hence (2.4.23-24).




SE
RL RL ¯
nπx ¯L
(a) A0 = L1 L/2 1dx = 21 , An = L2 L/2 cos nπx
L dx = 2
·
L nπ
L
sin 2 nπ
L ¯L/2 = − nπ sin 2

(b) by inspection A0 = 6, A3 = 4, others = 0.
RL ¯L RL
πx ¯
(c) A0 = −2
L 0 sin πx
L dx = 2
π cos 2
IS
L ¯ = π (1 − cos π) = 4/π, An =
0
−4
L 0
sin πx nπx
L cos L dx

(d) by inspection A8 = −3, others = 0.
O
2.4.3 Let x0 = x − π. Then the boundary value problem becomes d2 φ/dx02 = −λφ subject to φ(−π) = φ(π)
and dφ/dx0 (−π) = dφ/dx0 (π). Thus, the eigenvalues are λ = (nπ/L)2 = n2 π 2 , since L = π, n =
0, 1, 2, ... with the corresponding eigenfunctions being both sin nπx0 /L = sin n(x−π) = (−1)n sin nx =>
N

sin nx and cos nπx0 /L = cos n(x − π) = (−1)n cos nx => cos nx.
N


Section 2.5
2
O



2
2.5.1 (a) Separation of variables, u(x, y) = h(x)φ(y), implies that h1 ddxh2 = − φ1 ddyφ2 = −λ. Thus d2 h/dx2 =
−λh subject to h0 (0) = 0 and h0 (L) = 0. Thus as before, λ = (nπ/L)2 , n = 0, l, 2, . . . with h(x) =
2 ¡ ¢2
cos nπx/L. Furthermore, ddyφ2 = λφ = nπ
C




L φ so that
n = 0 : φ = c1 + c2 y, where φ(0) = 0 yields c1 = 0
ED




n 6= 0 : φ = c1 cosh nπy nπy
L + c2 sinh L , where φ(0) = 0 yields c1 = 0.
The result of superposition is

X nπx nπy
u(x, y) = A0 y + An cos sinh .
M




n=1
L L

The nonhomogeneous boundary condition yields

X nπH nπx
f (x) = A0 H + An sinh cos ,
n=1
L L

so that Z Z
L L
1 nπH 2 nπx
A0 H = f (x) dx and An sinh = f (x) cos dx.
L 0 L L 0 L


4

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer MedConnoisseur. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für 19,76 €. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 14 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf

Kürzlich von dir angesehen


19,76 €
  • (0)
  Kaufen