100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4,6 TrustPilot
logo-home
Prüfung

Solutions for Continuum Mechanics for Engineers, 4th Edition by Mase (All Chapters included)

Bewertung
-
Verkauft
4
seiten
232
Klasse
A+
Hochgeladen auf
30-10-2024
geschrieben in
2020/2021

Complete Solutions Manual for Continuum Mechanics for Engineers, 4th Edition by G. Thomas Mase; Ronald E. Smelser; Jenn Stroud Rossmann ; ISBN13: 9781482238686...1.Continuum Theory. 2.Essential Mathematics. 3.Stress Principles. 4.Kinematics of Deformation and Motion. 5.Fundamental Laws and Equations. 6.Linear Elasticity. 7.Classical Fluids. 8.Nonlinear Elasticity. 9.Linear Viscoelasticity. 10.Plasticity.

Mehr anzeigen Weniger lesen
Hochschule
Engineering Technology
Kurs
Engineering technology











Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Schule, Studium & Fach

Hochschule
Engineering technology
Kurs
Engineering technology

Dokument Information

Hochgeladen auf
30. oktober 2024
Anzahl der Seiten
232
geschrieben in
2020/2021
Typ
Prüfung
Enthält
Fragen & Antworten

Themen

Inhaltsvorschau

2

solutions for



Continuum Mechanics for Engineers




Fourth Edition




G. Thomas Mase
Ronald E. Smelser
Jenn Stroud Rossmann




** Immediate Download
** Swift Response

,Chapter 2 Solutions



Problem 2.1
Let v = a × b, or in indicial notation,
vi e ^j × bk e
^i = aj e ^k = εijk aj bk e
^i

Using indicial notation, show that,
(a) v · v = a2 b2 sin2 θ ,
(b) a × b · a = 0 ,
(c) a × b · b = 0 .

Solution
(a) For the given vector, we have
v · v = εijk aj bk e
^i · εpqs aq bs e
^p = εijk aj bk εpqs aq bs δip = εijk aj bk εiqs aq bs
= (δjq δks − δjs δkq ) aj bk aq bs = aj aj bk bk − aj bk ak bj
= (a · a) (b · b) − (a · b) (a · b) = a2 b2 − (ab cos θ)2
= a2 b2 1 − cos2 θ = a2 b2 sin2 θ


(b) Again, we find
a × b · a = v · a = (εijk aj bk e
^i ) · aq e
^q = εijk aj bk aq δiq = εijk aj bk ai = 0

This is zero by symmetry in i and j.
(c) This is
a × b · b = v · b = (εijk aj bk e
^i ) · bq e
^q = εijk aj bk bq δiq = εijk aj bk bi = 0

Again, this is zero by symmetry in k and and i.



Problem 2.2
With respect to the triad of base vectors u1 , u2 , and u3 (not necessarily unit vectors), the
triad u1 ,u2 , and u3 is said to be a reciprocal basis if ui · uj = δij (i, j = 1, 2, 3). Show that
to satisfy these conditions,
u2 × u3 u3 × u1 u1 × u2
u1 = ; u2 = ; u3 =
[u1 , u2 , u3 ] [u1 , u2 , u3 ] [u1 , u2 , u3 ]
and determine the reciprocal basis for the specific base vectors
u1 ^2 ,
e1 + e
= 2^
u2 ^3 ,
e2 − e
= 2^
u3 ^1 + e
= e ^2 + e^3 .


3

,4 Continuum Mechanics for Engineers

Answer
1
u1 = 5
(3^ ^2 − 2^
e1 − e e3 )
1
u2 = 5 e1 + 2^
(−^ ^3 )
e2 − e
1
u3 = 5 e1 + 2^
(−^ e2 + 4^
e3 )

Solution
For the bases, we have
u2 × u3 u3 × u1 u1 × u2
u1 ·u1 = u1 · = 1; u2 ·u2 = u2 · = 1; u3 ·u3 = u3 · =1
[u1 , u2 , u3 ] [u1 , u2 , u3 ] [u1 , u2 , u3 ]
since the triple scalar product is insensitive to the order of the operations. Now
u2 × u3
u2 · u1 = u2 · =0
[u1 , u2 , u3 ]
since u2 ·u2 ×u3 = 0 from Pb 2.1. Similarly, u3 ·u1 = u1 ·u2 = u3 ·u2 = u1 ·u3 = u2 ·u3 = 0.
For the given vectors, we have

2 1 0
[u1 , u2 , u3 ] = 0 2 −1 =5
1 1 1
and
^1
e ^2
e ^3
e
1
u2 × u3 = 0 2 −1 ^2 − 2^
e1 − e
= 3^ e3 ; u1 = ^2 − 2^
e1 − e
(3^ e3 )
1 1 1 5

^1
e ^2
e ^3
e
1
u3 × u1 = 1 1 1 e1 + 2^
= −^ ^3 ;
e2 − e u2 = e1 + 2^
(−^ ^3 )
e2 − e
2 1 0 5

^1
e ^2
e ^3
e
1
u1 × u2 = 2 1 0 e1 + 2^
= −^ e2 + 4^
e3 ; u3 = e1 + 2^
(−^ e2 + 4^
e3 )
0 2 −1 5




Problem 2.3
If the base vectors u1 , u2 , and u3 are eigenvectors of a tensor A , prove that the reciprocal
basis vectors u1 , u2 , and u3 are eigenvectors of the tensor’s transpose, AT .



Problem 2.4
If the base vectors u1 , u2 , and u3 form an orthonormal triad, prove that nk nk = I where
I is the identity matrix.



Problem 2.5
^i , and let b = bi e
Let the position vector of an arbitrary point P (x1 x2 x3 ) be x = xi e ^i be
a constant vector. Show that (x − b) · x = 0 is the vector equation of a spherical surface
having its center at x = 21 b with a radius of 21 b.

, Chapter 2 Solutions 5

Solution
For

(x − b) · x = (xi e ^i ) · xj e
^i − bi e ^j = (xi xj − bi xj ) δij = xi xi − bi xi =
= x21 + x22 + x23 − b1 x1 − b2 x2 − b3 x3 = 0

Now
 2  2  2
1 1 1 1 2  1
x1 − b1 + x2 − b2 + x3 − b3 = b + b22 + b23 = b2
2 2 2 4 1 4

This is the equation of a sphere with the desired properties.



Problem 2.6
Using the notations A(ij) = 12 (Aij + Aji ) and A[ij] = 21 (Aij − Aji ) show that

(a) the tensor A having components Aij can always be decomposed into a sum of
its symmetric A(ij) and skew-symmetric A[ij] parts, respectively, by the decom-
position,
Aij = A(ij) + A[ij] ,

(b) the trace of A is expressed in terms of A(ij) by

Aii = A(ii) ,

(c) for arbitrary tensors A and B,

Aij Bij = A(ij) B(ij) + A[ij] B[ij] .


Solution
(a) The components can be written as
   
Aij + Aji Aij − Aji
Aij = + = A(ij) + A[ij]
2 2

(b) The trace of A is  
Aii + Aii
A(ii) = = Aii
2
(c) For two arbitrary tensors, we have
 
Aij Bij = A(ij) + A[ij] B(ij) + B[ij] = A(ij) B(ij) + A[ij] B(ij) + A(ij) B[ij] + A[ij] B[ij]
= A(ij) B(ij) + A[ij] B[ij]

since the product of a symmetric and skew-symmetric tensor is zero
  
Aij + Aji Bij − Bji 1
A(ij) B[ij] = = (Aij Bij + Aji Bij − Aij Bji − Aji Bji )
2 2 4
1
= (Aij Bij + Aji Bij − Aji Bij − Aij Bij ) = 0
4

Lerne den Verkäufer kennen

Seller avatar
Bewertungen des Ansehens basieren auf der Anzahl der Dokumente, die ein Verkäufer gegen eine Gebühr verkauft hat, und den Bewertungen, die er für diese Dokumente erhalten hat. Es gibt drei Stufen: Bronze, Silber und Gold. Je besser das Ansehen eines Verkäufers ist, desto mehr kannst du dich auf die Qualität der Arbeiten verlassen.
mizhouubcca Business Hub
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
2494
Mitglied seit
2 Jahren
Anzahl der Follower
360
Dokumente
1602
Zuletzt verkauft
7 Jahren vor

4,3

437 rezensionen

5
280
4
75
3
39
2
14
1
29

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen