Comprehensive Summary and Notes of the Business Intelligence 1 course at Fontys.
Includes a clickable table of contents.
The course is guided along "Business Intelligence, Analytics and Data Science" by Sharda, Delen, Turban, King
Contents
Business Intelligence: .............................................................................................................................................................................................. 4
Changing Business Environments ............................................................................................................................................................................ 4
Evolution of BI ......................................................................................................................................................................................................... 4
Transaction Processing Versus Analytic Processing ................................................................................................................................................. 4
Investing in BI .......................................................................................................................................................................................................... 4
Real-Time BI ............................................................................................................................................................................................................ 5
Analytics .................................................................................................................................................................................................................. 5
Prescriptive Analytics ......................................................................................................................................................................................... 5
Examples: Analytics in Retail Value Chain ............................................................................................................................................................... 6
Start: Vendors .................................................................................................................................................................................................... 6
Final: Customers ................................................................................................................................................................................................ 6
Inventory Optimization ...................................................................................................................................................................................... 6
Price Elasticity .................................................................................................................................................................................................... 6
Big Data ................................................................................................................................................................................................................... 6
Data Continuum ................................................................................................................................................................................................. 7
Taxonomy of data – Structured vs Unstructured ............................................................................................................................................... 7
Data Preprocessing ............................................................................................................................................................................................ 7
START: Raw data sources.............................................................................................................................................................................. 7
1) Data Consolidation ............................................................................................................................................................................ 7
2) Data Cleaning..................................................................................................................................................................................... 7
3) Data Transformation.......................................................................................................................................................................... 7
4) Data Reduction .................................................................................................................................................................................. 7
OUTCOME: Well-Formed Data ..................................................................................................................................................................... 7
Business Reporting .................................................................................................................................................................................................. 8
Standard Reporting ............................................................................................................................................................................................ 8
Ad-hoc Reporting ............................................................................................................................................................................................... 8
Process Business Reporting................................................................................................................................................................................ 8
Types of Business Reports.................................................................................................................................................................................. 8
Metric management reports ........................................................................................................................................................................ 8
Dashboard-Type Reports .............................................................................................................................................................................. 8
Balanced Scorecard-Type Reports ................................................................................................................................................................ 8
Data Visualization .................................................................................................................................................................................................... 8
Chart Types ........................................................................................................................................................................................................ 8
Market of BI & Visualization .............................................................................................................................................................................. 9
Visual Analytics .................................................................................................................................................................................................. 9
Dashboards ........................................................................................................................................................................................................ 9
Data Warehouse...................................................................................................................................................................................................... 9
Characteristics of Data Warehouses .................................................................................................................................................................. 9
Data Warehouse Development .......................................................................................................................................................................... 9
1) Inmon Model: EDW approach (top-down .......................................................................................................................................... 9
2) Kimball Mode: DM approach (bottom-top) ....................................................................................................................................... 9
3) Hosted DW ........................................................................................................................................................................................ 9
Data Warehouse Architecture ......................................................................................................................................................................... 10
1
, Data Mart......................................................................................................................................................................................................... 10
1) Dependent data mart ............................................................................................................................................................................ 10
2) Independent data mart ......................................................................................................................................................................... 10
Data Warehouse architecture decision ............................................................................................................................................................ 10
End-user tasks ....................................................................................................................................................................................................... 10
Organization change and data warehouses ..................................................................................................................................................... 11
Data Integration ......................................................................................................................................................................................... 11
ETL Process = Extract Transform Load ........................................................................................................................................................ 11
Purchasing an ETL Tool ............................................................................................................................................................................... 11
Multidimensionality in DW .............................................................................................................................................................................. 11
4 Dimensions: ............................................................................................................................................................................................. 11
Analysis of Data in Data Warehouse (OLTP vs OLAP) ....................................................................................................................................... 11
OLAP Operations: ....................................................................................................................................................................................... 12
Massive DW and Scalability ............................................................................................................................................................................. 12
Data Warehouse Security ................................................................................................................................................................................ 12
Data Warehouse Location choice .................................................................................................................................................................... 12
Future of Data Warehouse .............................................................................................................................................................................. 12
Data Lake ......................................................................................................................................................................................................... 12
Performance Management ................................................................................................................................................................................... 13
Three key components of performance management..................................................................................................................................... 13
Closed-Loop Process to optimize Business Performance ...................................................................................................................................... 13
1) Strategize (Where do we want to go?) ........................................................................................................................................................ 13
Levels of strategy: ....................................................................................................................................................................................... 13
Strategic planning common tasks: .............................................................................................................................................................. 14
Evaluate strategy ........................................................................................................................................................................................ 14
2) Plan (How do we get there?) ....................................................................................................................................................................... 15
3) Monitor/Analyze (How are we doing?) ........................................................................................................................................................ 15
4) Act and Adjust (What do we need to do differently?) ................................................................................................................................. 15
Performance Measurement .................................................................................................................................................................................. 16
KPIs and Operational Metrics........................................................................................................................................................................... 16
Performance Management System ................................................................................................................................................................. 16
Balanced Scorecard.......................................................................................................................................................................................... 17
Data Mining (Knowledge Discovery) ..................................................................................................................................................................... 17
How data mining works ................................................................................................................................................................................... 17
Data Mining Methods ...................................................................................................................................................................................... 18
1) Classification .................................................................................................................................................................................... 19
2) Clustering (Cluster Analysis) ............................................................................................................................................................ 19
3) Association Rule Mining (market-based analysis) ............................................................................................................................ 19
Data Mining Applications ................................................................................................................................................................................. 20
Text Analysis.......................................................................................................................................................................................................... 21
Text mining ...................................................................................................................................................................................................... 21
Text mining Process .................................................................................................................................................................................... 22
Natural Language Processing (NLP).................................................................................................................................................................. 22
Sentiment Analysis ................................................................................................................................................................................................ 23
Web Mining (Web Data Mining)............................................................................................................................................................................ 23
2
, Content/Structure/Web Usage Mining ............................................................................................................................................................ 23
Metrics ....................................................................................................................................................................................................... 24
Social Analytics (Social Network Analysis) ............................................................................................................................................................. 24
Social -vs- Industrial Media .............................................................................................................................................................................. 25
Use of SM over time ........................................................................................................................................................................................ 25
Prescriptive Analytics ............................................................................................................................................................................................ 25
Model-based decision making ......................................................................................................................................................................... 26
Levels of Risk in Decision Making ..................................................................................................................................................................... 27
How to Model Decisions .................................................................................................................................................................................. 27
Multiple Goals .................................................................................................................................................................................................. 27
Big Data ................................................................................................................................................................................................................. 29
Trends in BI ........................................................................................................................................................................................................... 30
IoT .................................................................................................................................................................................................................... 30
Cloud Computing ............................................................................................................................................................................................. 31
Location-Based Analytics ................................................................................................................................................................................. 31
Ethical Considerations ........................................................................................................................................................................................... 32
3
, Business Intelligence:
• Global Term
• Decision making
o Based on information tech
Changing Business Environments
• Increased capabilities
o Hardware,
o Software
o Network
• Group Communication and collaboration
• Data management
o Data warehouses
o Big Data
• Analytical Support
• Knowledge management
• Anywhere, anytime
Evolution of BI
Transaction Processing Versus Analytic Processing
• (Online) Transaction Processing (OLTP)
• Operational databases
• ERP, SCM, CRM, …
• Goal: data capture
• (Online) Analytical Processing (OLAP)
• Data warehouses
• Goal: decision support
• What is the relationship between OLTP and OLAP?
Investing in BI
• Strategic decision
o Cost-Benefit Analysis
o Make or buy
o Security?
• Protection of info and privacy
o Integration to other systems and Applications
• Many companies have dedicated department
o Manages how BI is linked go overall strategy
o Enables interaction between potential business users
o Shares practices and trains users
o Defines standards
4
Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:
Garantiert gute Qualität durch Reviews
Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.
Schnell und einfach kaufen
Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.
Konzentration auf den Kern der Sache
Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.
Häufig gestellte Fragen
Was bekomme ich, wenn ich dieses Dokument kaufe?
Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.
Zufriedenheitsgarantie: Wie funktioniert das?
Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.
Wem kaufe ich diese Zusammenfassung ab?
Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer lennartfuchs. Stuvia erleichtert die Zahlung an den Verkäufer.
Werde ich an ein Abonnement gebunden sein?
Nein, du kaufst diese Zusammenfassung nur für 6,49 €. Du bist nach deinem Kauf an nichts gebunden.