100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
Macroeconomics I summary 0,00 €

Zusammenfassung

Macroeconomics I summary

1 bewertung
 518 mal angesehen  83 mal verkauft
  • Kurs
  • Hochschule
  • Book

Summary "Macroeconomics, European edition, N. Gregory Mankiw, Mark P. Taylor" CH2-CH4.1, CH5-CH14.2

vorschau 10 aus 31   Seiten

  • Nein
  • Ch. 2, 3, 4.1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14.1, 14.2
  • 18. mai 2020
  • 31
  • 2019/2020
  • Zusammenfassung

1  bewertung

review-writer-avatar

von: tvdberg • 4 Jahr vor

Von Google übersetzt

Thanks for the summary, was very instructive, definitely recommend it!

avatar-seller
Macroeconomics I: Summary
Tim Eijkenaar
May 2020




1

,Contents
1 GDP Accounting 4
1.1 GDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Expenditure components of GDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Price indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Unemployment 5
2.1 Measuring joblessness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The natural rate of unemployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Economic growth 6
3.1 Production function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Cobb-Douglas production function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Solow growth model 8
4.1 The production function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Steady state level of capital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Golden rule level of capital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 The effect of efficiency and population growth . . . . . . . . . . . . . . . . . . . . . . 12

5 Money and banking 13
5.1 Money . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 The quantity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 The demand for money . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4 The Fisher effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.5 The cost of holding money . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.6 Exchange rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Aggregate demand and supply 16
6.1 Aggregate demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 Aggregate supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 Aggregate supply = aggregate demand . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.4 Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 IS-LM Model 19
7.1 IS-Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 Shifting the IS-curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.3 LM -Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.4 Shifting the LM -curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.5 Equilibrium analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.6 Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 Mundell-Fleming model 24
8.1 IS ∗ -curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.2 When do we shift the IS ∗ -curve? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.3 LM ∗ -curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



2

, 8.4 When do we shift the LM ∗ curve? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.5 Equilibrium analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.6 Fixed exchange rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.7 Equilibrium analysis: e = e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9 Three models of aggregate supply 29
9.1 The sticky-price model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.2 The sticky-wage model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.3 Imperfect information model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.4 The new SRAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

10 Phillips curve 31




3

,1 GDP Accounting
1.1 GDP
Let Qi,t denote the quantity of product i at year t and let Pi,t be the price of product i at year t.
Assume the chosen base year is t = 0. Then,
X
Real GDP at year t = Pi,0 ∗ Qi,t
i
X
Nominal GDP at year t = Pi,t ∗ Qi,t
i


1.2 Expenditure components of GDP
The four expenditure components of GDP are given by the following formula: Y = C + I + G + N X

Y = Output = Income = GDP
C = Consumption = C(Y − T )
I = Investment = I(r)
G = Government spending
N X = Net exports = N X(e)

Where we used the fact that output Y is a function of disposable income (Y − T ), investment I is
a function of the interest rate r and N X is a function of the exchange rate e.

We define:

Trade deficit = X − M = Exports − Imports
Capital inflow = −N X


Furthermore we have the following formulas where we assume a closed economy (N X = 0):

Private saving = Y − T − C
Public saving = T − G
Saving = S = (Y − T − C) + (T − G) = I

1.3 Price indexes
Both the Paasche price index and the Laspeyres price index reflect what is happening to the price
level in the economy. They are defined in the following way.

P
Nominal GDP at year t Pi,t ∗ Qi,t
Paasche price index = GDP Deflator = = Pi
Real GDP at year t i Pi,0 ∗ Qi,t
P
P i,t ∗ Qi,0
Laspeyres price index = CPI = P i
i P i,0 ∗ Q i,0




4

,2 Unemployment
2.1 Measuring joblessness
Each adult is placed into one of the following three categories:

1. Employed E
2. Unemployed U
3. Not in the labour force

We define

Labour force = Number of employed + Number of unemployed

Number of employed
Unemployment rate = ∗ 100%
Labour force

Labour force
Labour force participation rate = ∗ 100%
Adult population

2.2 The natural rate of unemployment
It is reasonable to assume that the labour force L is fixed. The unemployment rate is under this
assumption fully determined by the transition of individuals in the labour force. Let s denote the
rate of job separation and let f denote the rate of job finding. Then the number of people that lose
their job sE must be equal to the number of people that find a new job f U .

f U = sE
f U = s(L − U )
U 1
=
L 1 + f/s

Where we used the fact that E = L − U and did some basic algebra steps to derive the last formula.




5

,3 Economic growth
3.1 Production function
Output Y , or GDP, is a function of the amount of capital K and the amount of labour L.
That is, Y = F (K, L).
A production function has the property ’constant returns to scale’ if zY = F (zK, zL) for every real
number z.
The marginal product of labour M P L is the extra amount of output a firm gets given a unit change
in the amount of labour. That is, M P L is the partial derivative of F with respect to L:

∂F (K, L)
MPL =
∂L
Likewise, the marginal product of capital M P K is the change in the amount of output given a unit
change in the amount of capital:
∂F (K, L)
MPK =
∂K

The above gives us the following result: let P be the price of one single unit of output and let W
be the wage corresponding to one unit of labour. Then if we increase L by one unit:

∆Profit = ∆Revenues − ∆Cost
= MPL ∗ P − W

Intuitively, as long as ∆Profit > 0 we want to increase the amount of labour until ∆Profit = 0.
Therefore, every competitive firm will satisfy

∆Profit = ∆Revenues − ∆Cost
0 = MPL ∗ P − W
W
MPL =
P
We can do the same steps for the M P K. This will lead us to the following result:
R
MPK =
P




6

,3.2 Cobb-Douglas production function
Any production function of the form F (K, L) = A K α L1−α with A > 0 and 0 ≤ α ≤ 1 is called a
’Cobb-Douglas production function’.
Note that F has constant return to scale since

F (zK, zL) = A(zK)α (zL)1−α = AK α L1−α z α z 1−α = zA K α L1−α = zF (K, L)

Furthermore for every Cobb-Douglas production function it holds that
Y
M P L = (1 − α)AK α L−α = (1 − α)
L
Y
M P K = αAK α−1 L1−α = α
K




7

,4 Solow growth model
4.1 The production function
Recall that the production function is given by F (K, L). In the Solow growth model we assume
that F has constant return to scale: zF (K, L) = F (zK, zL). Furthermore, we want to analyse
all quantities in the economy relative to the size of the labour force. That means that we are not
interested in output Y itself, but in YL . We now rewrite Y = F (K, L) to know more about YL . We
use the fact that F has constant return to scale. Note that in this case z = L1 :

Y = F (K, L)

Y F (K, L)
=
L L
K L
= F( , )
L L
K
= F( , 1)
L


From now on, we denote every variable relative to the size of the labour force with just the small
letter of the variable:
Y K C
=y =k =c
L L L


We can now rewrite our production function. Note that we can simply forget about the variable ’1’
since it is a constant. We use f instead of F for convenience.
Y K
= F ( , 1)
L L
y = F (k, 1)
= f (k)




8

,4.2 Steady state level of capital
In the Solow growth model output per worker y is divided between consumption per worker c
and investment per worker i. We assume a closed economy (N X = 0) and we ignore government
spending G:
y =c+i
We assume that individuals save a fraction s of their income (s ∈ [0, 1]) and consume a fraction
(1 − s) of their income:

c = (1 − s)y = (1 − s)f (k) i = sy = sf (k)


The capital stock changes over time because of the impact investment i and depreciation δ have on
it. Let i be the investment per worker per year and let δ be the fraction of capital that depreciates
per year. Then
∆k = i − δk = sf (k) − δk
Investment and depreciation balance over time. That is, sf (k) = δk. This implies that ∆k = 0.
The level of k at which ∆k = 0 is called the steady state level of capital per worker and is denoted
by k ∗ . This process is illustrated in the figure below.

We now ask ourselves what happens to k ∗ if we change the saving rate s. Suppose we increase the
saving rate s, this results into an increase in sf (k). Therefore, the sf (k)-curve shifts upward. This
results into a new equilibrium sf (k) = δk at a higher steady state level of capital per worker k ∗ .




9

, 4.3 Golden rule level of capital
The steady state value of k that maximizes consumption is called the Golden Rule level of capital

and is denoted by kgold . Recall that c = y − i = f (k) − sf (k). Since we only look for steady state
levels of capital per worker, we have that

∆k = 0 ⇔ sf (k) = δk

therefore the following holds for all steady state levels of capital per worker:

c∗ = y − i = f (k ∗ ) − sf (k ∗ ) = f (k ∗ ) − δk ∗

Since we have to maximize consumption in order to find kgold we have to solve:

d
f (k ∗ ) − δk ∗ = 0
dk ∗
MPK − δ = 0
MPK = δ

Remember that in the [k, f (k)]-plane the slope of the graph of the f (k)-function equals the MPK.

And the slope of the δk-line equals δ. We can find kgold by drawing the graph of f (k ∗ ) and the

δk-line: the point at which the slope of the graph of f (k ) is equal to the slope of the δk-line is the
∗ ∗
Golden Rule level of capital kgold , since only then we have M P K = δ. We can then insert the kgold
into sf (k) = δk to find the saving rate s. This is also illustrated in the figure below.


Example: Let f (k) = k and let δ =
0.1. Find the saving rate s at the Golden
Rule level of capital.
Solution:

MPK = δ
∂f (k)
= 0.1
∂k
1
√ = 0.1
2 k

10 = 2 k

kgold = 25

We now insert kgold into sf (k) = δk
∗ ∗
sf (kgold ) = δkgold

s 25 = 0.1 ∗ 25
5s = 2.5
s = 0.5
∗ 1
The saving rate s at kgold is given by s = 2


10

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer tei2308. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für 0,00 €. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 14 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf
Kostenlos  83x  verkauft
  • (1)