Summary CIE AS Chemistry Note Unit 16 - Halogen derivatives
62 views 0 purchase
Course
Unit 16 - Halogen derivatives (9701)
Institution
CIE
These notes cover the whole syllabus of 9701 Cambridge International Examination, AS Level Chemistry Notes what divided into to different Units. You may find each notes have corresponded specifically in each term from syllabus.
CIE AS Chemistry Note Unit 16 - Halogen derivatives
Alevel Chemistry Revision OC 16
Revision Material
Duration: 9th – 14th March
Topic 16 Halogen derivatives
The inclusion of a halogen atom within an organic molecule affects its reactivity. The reactions of halogenoalkanes are very important in organic chemistry.
Learning outcomes
Candidates should be able to:
16.1 Halogenoalkanes (a) recall the chemistry of halogenoalkanes as exemplified by:
(i) the following nucleophilic substitution reactions of bromoethane: hydrolysis, formation
of nitriles, formation of primary amines by reaction with ammonia
(ii) the elimination of hydrogen bromide from 2-bromopropane
(b) describe the SN1 and SN2 mechanisms of nucleophilic substitution in halogenoalkanes
including the inductive effects of alkyl groups (see Section 15.2(c))
(c) recall that primary halogenoalkanes tend to react via the SN2 mechanism; tertiary
halogenoalkanes via the SN1 mechanism; and secondary halogenoalkanes by a mixture of
the two, depending on structure
16.2 Relative strength of (a) interpret the different reactivities of halogenoalkanes (with particular reference to hydrolysis
the C-Hal bond and to the relative strengths of the C–Hal bonds)
(b) explain the uses of fluoroalkanes and fluorohalogenoalkanes in terms of their relative
chemical inertness
(c) recognise the concern about the effect of chlorofluoroalkanes on the ozone layer
, 16.1 Halogenoalkanes
(a) recall the chemistry of halogenoalkanes as exemplified by:
Halogenoalkanes are alkanes which contain a halogen atom covalently bonded to a carbon atom. When naming
halogenoalkanes, the prefix of the halogen (fluoro-/chloro-/bromo-/iodo-) is put before the alkane name with a number
to indicate which carbon the halogen is bonded to. For example 1-bromopropane, 3-chlorohexane and 2-iodopentane.
Structure and names
General formula CnH2n+1X, where X = F, Cl, Br or I
Types and naming of halogenoalkanes
Polarity of halogenoalkanes
ü halogen atoms are highly electronegative so that the halogen atoms in organic compounds will increase the polarity
of the molecules
Carbon and halogens have different electronegativities and halogenoalkanes have polar molecules with a polar C-X
bond.
chlorine is more electronegative than carbon electron flow from carbon to chlorine dipole produced
The polarity produces an electron-deficient carbon atom, 𝑐 !" which is important in the reactions od halogenoalkanes.
The polarity decreases from fluorine to iodine, reflecting the decrease in electronegativity down the halogen group.
Physical properties
- insoluble in water
- denser than water
- relatively higher boiling point / melting point than hydrocarbons (no hydrogen bonds)
(i) the following nucleophilic substitution reactions of bromoethane: hydrolysis, formation of nitriles, formation of
primary amines by reaction with ammonia
Nucleophiles are species that donate electrons. Common nucleophiles include: OH- CN- and NH3 .
The carbon-halogen bond in halogenoalkanes is polar because there is a large difference in electronegativity of these atoms. Halogens (particularly
chlorine and fluorine) are much more electronegative than carbon meaning that the bonding pair of electrons is drawn towards the halogen. The polarity of
this bond makes it relatively easy to break. When the bond breaks, a positive carbocation intermediate is formed which attracts nucleophiles.
Nucleophile – a substitution that donates long pair of electrons in a reaction (electron pair donor)
e.g. :OH- , :H2O, :Cl–, :Br–, :I–, :NH3–, :CN–
R-X + H2O → R-OH + HX (NaOH, reflux)
1. Substitution of reactions with aqueous alkali, OH– (aq).
CH3CH2Br + NaOH → CH3CH2OH + NaBr
Bromoethane ethanol
OR CH3CH2Br + OH– → CH3CH2OH + Br–
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller YNL. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $5.69. You're not tied to anything after your purchase.