100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Hoorcolleges algemene deel ARMS

Beoordeling
4.0
(2)
Verkocht
2
Pagina's
25
Geüpload op
10-03-2021
Geschreven in
2020/2021

In dit document zijn de hoorcolleges van het algemene deel van ARMS week 1 t/m 5 in het Engels opgenomen.

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
10 maart 2021
Aantal pagina's
25
Geschreven in
2020/2021
Type
College aantekeningen
Docent(en)
Carlijn van den boomen
Bevat
College week 1 t/m 5

Onderwerpen

Voorbeeld van de inhoud

Advanced Research Methods and Statistics – lectures
Lecture 1 – Introduction: Multiple linear regression
Week 1

 Always critically review the way studies are performed
o Is there a representative sample?
o Are the measures or variables reliable?
o Are the analysis correct and the interpretation of results correct?
 Always critically consider alternative explanations for the statistical association
o Association is NOT causation
o Does effect remain when additional variables are included?
 Simple linair regression: involves 1 outcome (Y) and 1 predictor (X)
o Outcome = DV = dependent variable (e.g. IQ)
o Predictor = IV = independent variable (e.g. Birth order)
 EQUATIONS ARE NEVER TESTED! Models & output are important —> equations of plots are
tested




 If the model is a good way to describe the model and if the predictor is useful for predicting your
outcome. 2 main things that are evaluated:
1. The relevance of a predictor: To what extent does the model explain variation in the data?
—> can the predictor explain the outcome?
2. B- value, slope of the line: if it is larger than the predictor is more relevant: how important




is my predictor for predicting the outcome?




 Multiple linair regression (MLR): examines a model where multiple predictors are included to check
their unique linear effect on Y
 Things you need to know about MLR:
o The model (different trends)


1

, o The types of variables in MLR
o MLR and hierarchical MLR
 Hypotheses
 Output
 Model fit: R2, adjusted R2, R2-change
 Regression coefficients: B and Beta (standardized B)
o Exploratory MLR (stepwise) vs. Confirmatory MLR (forced entry)
o Model assumptions important to MLR

The model

 Outcome variable: y, because it is placed on the y-axis when you plot things
 Intercept:
 Slope:
 Residual: some error in the prediction
 Observed outcome: prediction based on the model and some error in prediction
 Y hat: prediction!!! (Y met dakje) —> will probably not be exactly the observed outcome —> this is
called the statistical model, MLR e.g.
 Subscript i: notes that each individual can have a different score
 Terms without subscript i’s: parameters, stay the same over the different individual scores
 Additive linear model: multiple predictors, assume that the predictions are additive! (+, +) —> different
then e.g. Correlation models (interaction effects)
 Main effect: x1, x2, look at a model where they are both added in the model




Types of variables

 Formal distinctions in 4 measurements levels, logical order (lowest to highest level of complexity)
o Nominal
o Ordinal
o Interval
o Ratio
 For choice of analysis we usually distinguish:
o Nominal + ordinal: categorical or qualitative
o Interval + ratio: continuous or quantitative or numerical —> allowed to make computations
with this variable
 Rule 1 in MLR: the outcome is always continuous AND continuous predictors!!!
o Is created for the situation where all the variables are continuous
o One exception: if you want to include a categorical predictor, that’s possible, but you have to
use dummy variables
 Dummy coding in MLR models: e.g., is gender a predictor of grade?
o Gender: create a dummy variable, e.g. 0 = male, 1 = female (ALWAYS a 1/0 variable!!)




2

,  More predictors? Create more dummy variables!
o E.g., one to denote red(1) or not red (0)
o One to denote blue (1) or not blue (0)
o One to denote green (1) or not green (0)
o If all the dummy’s are 0 you will know it is 0 —> reference group (group with 0’s on all
dummy’s)
 Predicted score on the outcome is a certain intercept —> average on y for the reference group (0’s on
all dummy’s so 3 terms disappear)




Hierarchical MLR

Output 1
 For each model must be HA: R2(-change) > 0
o R-squared change > 0 means that the additional predictors improve the model
 For each predictor x within each model: HA: B1 is not 0 —> unique effect of x within this model
 Output 1: you can see 2 models. Always read the titles, columns and footnotes!
o In the model summary you can see R, R squared, adjusted R squared
 R-squared: proportion of variance in the outcome variable explained by the model —> computed for
your sample
o Inferential statistics: using a sample to say something about the population
o Not a very good estimate for the population R-squared… Always a little bit too optimistic/high
 More predictors, more optimistic! (Bias)
 R: square root of R-squared. This is called multiple correlation coefficient: correlation between
observed Y’s en predicted Y’s (capital R to denote that it’s a multiple correlation and not bivariate!!!)
 Adjust R-squared: somewhat smaller than unadjusted.
o Corrected for the bias of the sample, then you get the adjusted R-squared
o Says something about your guess about the population variance!
 R-squared change says something about the difference between the two models. So R-squared change
0.127 for model 2 says something about the difference between model 2 and model 1 (significant
improvement)
 Model summary: says something about the addition of new variables to the model, how do they
compare to each other? Is it a significant addition?




3
$8.43
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
4 jaar geleden

4 jaar geleden

4.0

2 beoordelingen

5
0
4
2
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
hannahvanrhoon Universiteit Utrecht
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
103
Lid sinds
6 jaar
Aantal volgers
86
Documenten
18
Laatst verkocht
5 maanden geleden

4.2

21 beoordelingen

5
7
4
13
3
0
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen