100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Uitwerkingen logaritmische functies Havo 5 Wiskunde B $4.28
Add to cart

Exam (elaborations)

Uitwerkingen logaritmische functies Havo 5 Wiskunde B

 0 purchase
  • Course
  • Level

Uitwerkingen van opdrachten van het hoofdstuk : Logaritmische functies Havo 5

Preview 4 out of 32  pages

  • March 18, 2021
  • 32
  • 2020/2021
  • Exam (elaborations)
  • Questions & answers
  • Secondary school
  • 5
avatar-seller
-/H1 Logaritmische functies
Voorkennis: Exponentiële functies

Pagina 12


Vla In 2 jaar neemt de dagwaarde af van 25 000 euro naar 20 250 euro.
20 250
De groeifactor per 2 jaar is 25 000=0,81. De groeifactor per jaar is
,1
dus ( 0,81)2 = 0,9.
b De afname per jaar is (1 — 0,9) • 100% = 10%.
c W= 25000 • 0,9' geeft

t in jaren 0 1 2 3 4 5
Win euro 25 000 22 500 20 250 18 225 16 402,5 14 762,25
De benadering is zeer goed, want de waarden komen overeen met de waarden
in de tabel.
d Per 10 jaar is de groeifactor 0,91° 0,3487.
e Per 10 jaar neemt de dagwaarde af met (1 — 0,3487) • 100% ---- 65,1%.

v-2a Bij een exponentiële functie staat in de exponent een uitdrukking in x.

De exponentiële functies zijn dus f(x) = 4 • Mx, g(x) = 2 • 1,7x en

j(x) = 7 • 1,0001x.
b De functies g enj zijn stijgend, omdat de waarde van y altijd toeneemt als x
toeneemt. De groeifactor is dan groter dan 1. Bij g enjzijn de groeifactoren
1,7 en 1,0001.
c Voor het snijpunt van de grafieken met de y-as geldt x = 0.
Invullen in de functies geeft de y-coiirdinaat:
f(0) = 4 • Gr = 4 • 1 = 4, dus (0, 4) is het snijpunt voor de grafiek van,/

g(0) = 2 1,7° = 2 • 1 = 2, dus (0, 2) is het snijpunt voor de grafiek van g.
j(0) = 7 • 1,0001° = 7 • 1 = 7, dus (0, 7) is het snijpunt voor de grafiek van j.

V-3a De beginhoeveelheid b = 1720 en de groei per jaar is 5,7%,
dus de groeifactor g = 1,057.
Het functievoorschrift is f(t) = 1720 • 1,0571.
b De beginhoeveelheid is 37 980 en de groeifactor per week is 100 — 0,5 = 99,5%,
dus de groeifactor g = 0,995.
Het functievoorschrift is f(t) = 37 980.0,9951.
c De hoeveelheid neemt met 25% per dag toe, dus na één dag is er 25% meer en
groeit de hoeveelheid 1,25 keer. De groeifactor g = 1,25.
12500
Voor t = 2 is de hoeveelheid 12 500 dus 12500 = b - 1,252 b = = 8000.
1 ,252
Het functievoorschrift is f(t) = 8000 • 1,25'.

, HOOFDSTUK 1 LOGARITMISCHE FUNCTIES




37 014 ( 37 014
d Uit 134 780 . g • g • g = 37 014 volgt g3 = g=
134 780 134 780) - 0'65'
134 780
Voor t = 2 is de hoeveelheid 134 780 dus 134 780 = b • 0,652 = b = - 319006.
0,652
Het functievoorschrift is f(t) = 319006 • 0,65'.

Pagina 13


V-4a 53 . 54 = 5.5.5. 5.5.5.5 = 57
b (72)5 = (72) . (72) . (72) , (72) , (72) = 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 = 710
1 23 2.2.2 2, • 2.2 1 1
c
2-4 23 24 23 24 2•2•2•2 2 •2„ 2. 2 2' -
d (53)2 - 55 = (53) • (53) • 55 = 5 5 - 5 • 5 5 - 5 • 5 - 5 - 5 - 5 • 5 = 511

V-5a 7-3 =
73
1
b g-5 =

G) 2 = (3-1)-2 = 3-1 • -2 = 32 = 9

V-6a 314. 3-16 = 314+(-16) = 314-16 = 3-2 C 7x+1 . 7-x+3 = 7(x+1)+(-x+3)
a -5 , al2 = a-3-5+12 = a4 7x+1-x+3 = 71+3 = 74
b (1-3



v-7a 21 +5x = 8 d 8 - 4P = 2
21+5x = 23 23 • (22) = 21
1 + 5x = 3 23. 22,p = 21
5x = 2 23+ 2P = 21
,... 2
X— 3 + 2p = 1
13 52" = 25 2p = -2
52t-8 = 5-2 P = -1
2t-8 = -2 e 6.6x= 6
2t = 6 61+x = 6-1
t=3 1 + x = —1
c 3-t = 9 x = —2
3-t = 32 f 52t•53t =
-t = 2 55t = 5o
t = —2 51=0
t=0

V- 8a 3-x =5.
Het lukt niet om 5 als macht van 3 te schrijven. Met de rekenmachine:
Y1 = 3"(-X) en Y2 = 5.
Venster: standaard
Calc intersect geeft als oplossing x -1,46.
b 4 • r+3 7
Het lukt niet om 7 als macht van 2 te schrijven. Met de rekenmachine:
Y1 = 4*2^(X+3) en Y2 = 7.
Venster: standaard
Caic intersect geeft als oplossing x -2,19.

, HOOFDSTUK 1 LOGARITMISCHE FUNCTIES




c 50,3x = 1 + 2-x.
Met de rekenmachine:
Y1 = 5^(0.3X) en Y2 = 1+2^(—X).
Venster: standaard
Calc intersect geeft als oplossing x 0,89.
d —3x + 4 = —4 + (212-x
Met de rekenmachine:
Y1 = —3X+4 en Y2 = —4+0.5^(2—X).
Venster: standaard
Calc intersect geeft als oplossing x 2,27.


1-1 Logaritmen


Pagina 14


la 2x = 4 d 5x=
2x = 22 5x = Sz

x=2 x= 2
b 3x = 27 e 2x = 256
3x = 33 2x = 28
X = 3 x=8
c 10x= f 3x = (D4
10x = 10-1 3x = (3-1)4
x = —1 3x = 3-4
x = —4

2a 3x = a is algebraïsch op te lossen als a een macht van 3 is. Tussen 1 en 10 zijn
de getallen 3 en 9 machten van 3.
b Tussen 100 en 1000 liggen de machten 35 = 243 en 36 = 729, dus a = 243 en
a = 729.

3a De vergelijking los je exact op door de exponenten met elkaar te vergelijken.
De grondtallen moeten dan gelijk zijn. Omdat 7 niet als macht van 2 te
schrijven is en 2 niet als macht van 7 lukt het niet om een gemeenschappelijk
grondtal te vinden.
b Met de rekenmachine: 22,80 6,96 en 22,81 7,01.
6,96 < 7 < 7,01
22,80 < 2x < 22,81
Voor een waarde van x ergens tussen 2,80 en 2,81 zal 2x de waarde 7
aannemen, dus geldt voor de oplossing 2,80 < x < 2,81.
c Met de rekenmachine:
Y1 = 2^X en Y2 = 7.
Venster: standaard
Calc intersect geeft als oplossing x 2,8074.

, HOOFDSTUK 1 LOGARITMISCHE FUNCTIES




4a 32 = 9 en 33 = 27
9 < 25 < 27
32 <3x<33
Voor 3x = 25 ligt x dus tussen 2 en 3.
b 32 = 9 en 33 = 27
9 < 15 < 27
32 <3x<33
Voor 3x = 15 ligt x dus tussen 2 en 3.
61 = 6 en 62 = 36
6 < 30 < 36
61 < 6x < 62
Voor 6x = 30 ligt x dus tussen 1 en 2,
De oplossing van 3x = 15 is dus groter.

5a 7x = 4 = x = 7 log(4) c 5x= 14 x = slog(14)
b 7x= 10= x = /log(10) d 5x= 125= 5x =53 = x = 3

6a x = 3 log(5) 3x = 5
b x =7 104 =


C x = 4 is de oplossing van bijvoorbeeld 2x = 16, = 4 of 3x = 34, dus van
3x = 81.

Pagina 15

7a 3 log(27) = 3, want 27 = 33.
b 21°4) = -3, want 4 = 2-3.
c slog(5) = 11, want 5.\I = 5 . = 51 . = 51 +. =
d 7 log(1) = 0, want 1 = 7°.

8a 5 log(2), 5 log(3), 5 log(1000) hebben allemaal 5 als grondtal. De uitkomst
van de logaritme is een geheel getal als het getal tussen haakjes een macht
van 5 is. De machten 51 = 5,52 = 25, 53 = 125 en 54 = 625 liggen tussen 2 en
1000, dus de logaritmen 5 log(5), 5 log(25), slog(125) en 5 log(625) hebben
een geheel getal als uitkomst.
b 7 log(11
2 ), 7log(3), 7log(10100) hebben allemaal 7 als grondtal. De uitkomst

van de logaritme is een geheel getal als het getal tussen haakjes een macht
1 1
van 7 is. De machten 7-1 = 7' 7-2 = —2 = 149
en 7-3 = 73 = 343 liggen tussen

en 1000, dus de logaritmen 7log(71 ), 7 log(419) en 7 log(343) hebben een geheel

getal als uitkomst.

9a 21og(2) = 12, want 2'\1 = 212 d .log(4) = 3, want 4 = 43 = (4)3
b 7 10 g (49 — 2, want 419 = = 7-2 e hog(9) = -2, want 9 = =
1. 1 ,, -2

72
(ï)
c 1° log(1 000000) = 6, want 1 000 000 = 106 f 25 log(5) = 1, want 5 = 25 = 25

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Julian033. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $4.28. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

65507 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$4.28
  • (0)
Add to cart
Added