100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Uitwerkingen Goniometrische functies havo 5 Wiskunde B $4.28
Add to cart

Exam (elaborations)

Uitwerkingen Goniometrische functies havo 5 Wiskunde B

 0 purchase
  • Course
  • Level

Uitwerkingen van hoofdstuk : Goniometrische functies Havo 5 Wiskunde B

Preview 3 out of 29  pages

  • March 18, 2021
  • 29
  • 2020/2021
  • Exam (elaborations)
  • Questions & answers
  • Secondary school
  • 5
avatar-seller
H3 Goniometrische functies
Voorkennis

Pagina 70

180
Vla graden 0 30 45 60 90 120 135 150 = 57,29 180
2 3
radialen 0 16 n 14 n 3 n 4 7T
- -
6n 1 n


V-2a x= x = 0, x = x = 2n en x = 3n,
b (-2 rt,-1), (2177,4 (1217, -1) en
en k2In, 1).

c Na 2n herhaalt de grafiek zich, dus de periode is 2n.
d In het punt (n, 0)
e De grafiek is lijnsymmetrisch in x =
x = -0 en x = 16 n liggen beide even ver van x = in af, dus bij x = -0 en
x = 1 én zijn de y-waarden gelijk aan elkaar.
NORMAL FLORT AUTO RERL RADIAN MP
v-3a Invoer: Y1 = cos(X)
Venster: Xmin = -n en Xmax = n
Ymin = -1.5 en Ymax = 1.5
b x = 2 n en x = 2- n '
c (-n, -1), (0, 1) en (n, -1).
d Bij x = n begint de grafiek weer als bij x = -n, dus de
periode is 2n.
e In de lijnen x = -n, x = 0 en x = n.
f De grafiek is puntsymmetrisch in (in, 0).
X = gn en x = liggen beide even ver van x -1 n af,
dus bij x=6n en x =gin
zijn de y-waarden tegengesteld aan elkaar.

vita De grafiek van f = sin(x) is lijnsymmetrisch in x = 2n, dus
sin(4n) = sin(14 n) = F\12.
b De grafiek van f = sin(x) is lijnsymmetrisch in x = in, dus
sin@ n) = sinG n) = F\15.
c De grafiek van f = sin(x) is lijnsymmetrisch in x = In, dus
sin( n) = sin(é n) = Z.
d De grafiek van f = sin(x) is puntsymmetrisch in (71, 0), dus
sin(1 in) = -sin(2In) = -1.
e De grafiek van f = cos (x) is lijnsymmetrisch in x = n, dus
cos( 11n) = cos(6n) =
f De grafiek van je= cos(x) is puntsymmetrisch in (1-n 0) dus
cos(ln) = -cos(4n) = +2.

, HOOFDSTUK 3 GONIOMETRISCHE FUNCTIES




g De grafiek van f = cos(x) is lijnsymmetrisch in x = n, dus
cos(1 1ïn) = cos(4n) =
h De grafiek van f = cos(x) is lijnsymmetrisch in x = Tr, dus
cos(lin) = cos(In)


Pagina 71


v-5a Een verschuiving van In naar rechts, daarna een vermenigvuldiging ten
opzichte van de x-as met 3
b De amplitude is 3. Het beginpunt (0, 0) van de grafiek vanfschuift op naar
(4n, 0) als een beginpunt voor de grafiek van g.
c Een vermenigvuldiging van 2 ten opzichte van de y-as, daarna een
verschuiving van 1 omhoog
d De periode is n en de evenwichtsstand is de lijn y = 1.

vaa a = 1, dus de amplitude is 1.
2n
b = 1, dus de periode is — = 2n.
1
d= 0, dus de evenwichtsstand is de lijn y = 0.
c = 5n, dus een beginpunt ligt op de lijn x = rr.
y = cos(x - = cos(In - = cos(0) = 1, dus een beginpunt is (in, 1).
b a = 1, dus de amplitude is 1.
2Tr
b = 1, dus de periode is — = 2n.
1
d= 4 dus de evenwichtsstand is de lijn y = 4
c = 0, dus een beginpunt ligt op de lijn x = 0.
y = sin(x) - 2 = sin(0) = 0 - 2 = -4 dus een beginpunt is (0, -1).
c a = 1, dus de amplitude is 1.
2n 2
b = 3, dus de periode is — = - n.
3 3
d= -2, dus de evenwichtsstand is de lijn y = -2.
c = 0, dus een beginpunt ligt op de lijn x = 0.
y = -2 + cos(3x) = -2 + cos(3 •0) = -2 + 1 = -1, dus een beginpunt is (0, -1).
d a = 1, dus de amplitude is 1.
2n
b = 1, dus de periode is — = 2n.
1
d= 2, dus de evenwichtsstand is de lijn y = 2.
c = 3, dus een beginpunt ligt op de lijn x = 3.
y = 2 + cos(x - 3) = 2 + cos(0) = 2 + 1 = 3, dus een beginpunt is (3, 3).
e a = 1, dus de amplitude is 1.
2Tr 4n
b = ïn, dus de periode is = — = 4.
2 11 TC
d= -3, dus de evenwichtsstand is de lijn y = -3.
e = 0, dus een beginpunt ligt op de lijn x = 0.
y = cos(nx) - 3 = cos(0) - 3 = 1 - 3 = -2, dus een beginpunt is (0, -2).

, HOOFDSTUK 3 GONIOMETRISCHE FUNCTIES




f a = 3, dus de amplitude is 3.
2n 4n
b = 0,5, dus de periode is — = T = 4n.
05
d= 0, dus de evenwichtsstand is de lijn y = 0.
c = 0,25n, dus een beginpunt ligt op de lijn x = 0,25n.
y = 3 sin(0,5(x - 0, 25r()) = 3 sin(0) = 0, dus een beginpunt is (0,25n; 0).

2n
V-7a De periode is—5 = 4n. Het maximum is y = 4,5 voor 0,5x = 2n x = n.
Het minimum is y = 0 voor x = 0 en x = 2n.
b De periode is 2n. Het maximum is y = -2 • -1 + 8 = 10 voor
cos(x) = -1 x=n.
Het minimum is y = -2. 1 + 8 = 6 voor cos(x) = 1 x = 0 en x = 2n.
c De periode is 2n. Het maximum is y = 14 + 7. 1 = 21 voor
sin( x + 7-c) = 1 x + 31— Ir = 12n x 61 ic,
Het minimum is y = 14 + 7 • -1 = 7 voor
sin(x + 13- 71) = —1 X +—
13 71 = 1 12 TI x= 16n.
7C.

d De periode is 231. Het maximum is y = -2 . -1 + 5 = 7 voor
sin(x - 4 n) = -1 x =1n x = 2 -,7t x = 49-c (oplossing op [0, 271]).
Het minimum is y = -2 . 1 + 5 = 3 voor sin(x - in) = 1 x - = x = 14n.


V-8a Het minimum is -3 en het maximum is 5. De evenwichtsstand in het midden is
—3 5
Y 2 1-
Tussen (0, 1) en (5, 1) op de evenwichtslijn ligt een halve periode. De periode
is dus 2 5 = 10.
b Het maximum geldt voor x = 2 2 en x = 12 2. Het minimum geldt voor
x=72 en x= 11.

c x = 5 + = en x = + 10 = 9é.


3-1 Een functievoorschrift opstellen

Pagina 72

la Alleen het beginpunt verandert van (0, 0) naar (3 n, 0).
b De evenwichtsstand verandert van de lijn y = 0 naar de lijn y = 2 en het
beginpunt verandert van (0, 0) naar (0, 2).
c Alleen de amplitude verandert van 1 naar 3.
d Alleen de periode verandert van 2n naar 4n.

2a Het maximum is 2 en het minimum is -6.
b d = 6 2+ 2 = 2
c a = 2 - (-2) = 4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Julian033. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $4.28. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

65507 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$4.28
  • (0)
Add to cart
Added