Week 1 Ethics and Technology ............................................................................................................... 2
Lecture 1 ..................................................................................................................................................... 2
Reading week 1: Fair Warning .................................................................................................................... 3
Seminar week 1 .......................................................................................................................................... 3
Pre-recorded lecture week 1 – Smart solutions ......................................................................................... 7
Week 2 - How does ‘smart’ technology work? Evaluation metrics .......................................................... 8
Reading week 2 – Fairness and machine learning ...................................................................................... 8
Video by Mitchell - Bias in the Vision and Language of Artificial Intelligence ............................................ 9
Video by Isabell - You Can’t Escape Hyperparameters and Latent Variables: Machine Learning as a
Software Engineering Enterprise .............................................................................................................. 12
Lecture 2 – Language technology and its social implications ................................................................... 13
Seminar week 2 ........................................................................................................................................ 21
Week 3 – Understanding the Impact of (language) technology ............................................................. 23
Pre Recorded lectures week 3 .................................................................................................................. 23
Reading: Filter Bubble – Eli Pariser ........................................................................................................... 32
Reading: Challenging Google Search filter bubbles in social and political information: Disconfirming
evidence from a digital methods case study (Courtois et al., 2018) ........................................................ 33
Reading: Perceived threats from social bots: The media's role in supporting literacy - (Schmuck & von
Sikorski, 2020) .......................................................................................................................................... 33
Seminar week 4 ........................................................................................................................................ 35
Week 5 - Natural language processing, Natural language Generation ................................................... 36
YouTube video – Computational linguistics: Crash Crouse Linguistics ..................................................... 36
Reading: The social impact of natural language processing. Hovy, D., & Spruit, S. L. (2016). ................. 37
Reading: What to do about non-standard (or non-canonical) language in NLP. Plank, B. (2016) ........... 38
Lecture week 5 - Natural language processing & natural language generation ....................................... 39
Seminar week 5 ........................................................................................................................................ 46
Week 6 - Applications and implications of language technology ........................................................... 49
Reading: On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? - Bender et al. (2021)
.................................................................................................................................................................. 49
Reading: Gender and Dialect Bias in YouTube’s Automatic Captions (Tatman, 2017) ............................. 49
Lecture week 6 part 1 - Voice interfaces .................................................................................................. 50
Lecture week 6 part 2 - Virtual assistants and chatbots .......................................................................... 53
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller RBroeren. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $13.40. You're not tied to anything after your purchase.