100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
EXAMEN CALCULO INGENIERIA AEROSPACIAL $3.16
Add to cart

Exam (elaborations)

EXAMEN CALCULO INGENIERIA AEROSPACIAL

 16 views  0 purchase
  • Course
  • Institution

Examen de practica de calculo de primero de ingeniería aerospacial.

Preview 1 out of 3  pages

  • April 7, 2021
  • 3
  • 2020/2021
  • Exam (elaborations)
  • Answers
avatar-seller
Càlcul. Graus d’Enginyeria Aeronàutica (EPSC)
Examen de Mig quadrimestre. 3 de novembre de 2010



Cal raonar i desenvolupar adequadament les respostes.


1. a) Calculeu el polinomi de Taylor de grau 3 de la funció arcsin x, centrat en el punt
a=0.
b) Avalueu aquest polinomi en x = 12 i deduı̈u que 3 + 1
8
és una aproximació de π
(no cal que doneu una fita de l’error).
c) Enuncieu el criteri de la derivada n-èsima per a extrems relatius.

Resolució:



a) Siguin f (x) = arcsin x i P3 (x) = PT (f (x), a = 0, 3). Llavors, per la fórmula de
f 0 (0) f 00 (0) f 000 (0)
Taylor, P3 (x) = f (0) + (x − 0) + (x − 0)2 + (x − 0)3
1! 2! 3!
Calculem les primeres tres derivades de f (x) = arcsin x:

1 x 3x2 1
f 0 (x) = √ , f 00 (x) = 2 3/2
, f 000
(x) = 2 5/2
+
1−x 2 (1 − x ) (1 − x ) (1 − x2 )3/2
Avaluem en a = 0: f (0) = 0, f 0 (0) = 1, f 00 (0) = 0 i f 000 (0) = 1.
x3
Aixı́ doncs, el polinomi de Taylor demanat és P3 (x) = x + .
6
 
1 1 1 1
b) Avaluem el polinomi de Taylor P3 (x) en x = i obtenim P3 = + .
      2 2
 2  8·6
1 1 1 π 1 1 1
Com que P3 ≈f = arcsin = , obtenim π ≈ 6 + = 3+ .
2 2 2 6 2 8·6 8

c) Siguin I ⊂ R un interval obert, a ∈ I i una funció f ∈ C n (I) tal que
f 0 (a) = f 00 (a) = · · · = f (n−1) (a) = 0 i f (n) (a) 6= 0. Aleshores
Si n és parell i f (n) (a) > 0, llavors f té un mı́nim relatiu en el punt a.
Si n és parell i f (n) (a) < 0, llavors f té un màxim relatiu en el punt a.
Si n és senar, llavors f té un punt d’inflexió en el punt a.


n
X (−1)k x2k
2. a) Sabent que PT (cos x, a = 0, 2n) = ,
(2k)!
k=0
6
utilitzeu-ho per calcular PT (cos(x ), a = 0, 32).
x24 − x12
b) Calculeu lı́m
x→0 1 − cos(x6 )
c) Determineu les corbes de nivell de la funció f (x, y) = −2x2 + 2y 2 + 12y i dibuixeu-les
en un mateix pla.

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller mariadapenaribalta. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.16. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

49051 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$3.16
  • (0)
Add to cart
Added