Data Mining For Business And Governance (880022M6)
All documents for this subject (8)
Seller
Follow
clairevanroey
Reviews received
Content preview
DATA MINING FOR BUSINESS AND GOVERNANCE
Chris Emmery, Çiçek Güven & Gonzalo Nápoles
TABLE OF CONTENTS
Introduction to Data Mining ........................................................................................................................... 5
1. What is Data Mining? ................................................................................................................................ 5
1.1. Key aspects: Computation & Large data sets .................................................................................... 5
1.2. Big Data ............................................................................................................................................. 6
1.3. Applications ....................................................................................................................................... 6
2. What makes prediction possible?............................................................................................................... 6
3. Data Mining as Applied Machine Learning ................................................................................................ 7
3.1. Supervised learning ........................................................................................................................... 7
3.2. Unsupervised Learning ...................................................................................................................... 8
Introduction to Data Science ......................................................................................................................... 10
1. What is data science?............................................................................................................................... 10
1.1. Example ........................................................................................................................................... 10
1.2. Terminology..................................................................................................................................... 10
1.3. The algorithm .................................................................................................................................. 12
1.4. Evaluation ........................................................................................................................................ 12
1.5. Computer hardware ........................................................................................................................ 13
2. Representing data .................................................................................................................................... 14
2.1. How do we get data? ....................................................................................................................... 14
2.2. File formats: raw-level representation of files ................................................................................ 15
2.3. Databases: storing the data a bit more cleverly .............................................................................. 16
2.4. Data science in practice: 80% vs. 20% ............................................................................................. 16
2.5. Representation of data .................................................................................................................... 16
3. Classification ............................................................................................................................................ 24
3.1. Decision boundaries to label parts of a data as being a certain category ....................................... 26
3.2. ML algorithms for classification using decision boundaries ............................................................ 26
3.3. Multiclass classification (ó binary classification) ........................................................................... 35
4. Fitting and tuning ..................................................................................................................................... 36
4.1. Fitting............................................................................................................................................... 37
5. Evaluation ................................................................................................................................................ 43
5.1. Metrics for evaluating a Regression Task ........................................................................................ 43
5.2. Metrics for evaluating a Classification Task..................................................................................... 43
5.3. Schemes for applying metrics in model selection ........................................................................... 46
5.4. Best practices & common pitfalls .................................................................................................... 49
6. Models ...................................................................................................................................................... 55
6.1. Model selection ............................................................................................................................... 55
6.2. What is ‘learning’? ........................................................................................................................... 55
Working with Text data ................................................................................................................................ 56
1. Representing text as vectors .................................................................................................................... 56
1.1. Converting to numbers .................................................................................................................... 56
2. Binary vectors for Decision Tree classification (ID3) ................................................................................. 58
2.1. Inferring rules (decisions) by information gain: EX: Spam detection .............................................. 58
3. Using Vector Spaces and weightings ........................................................................................................ 62
3.1. Binary vs. Frequency........................................................................................................................ 62
3.2. Term frequencies............................................................................................................................. 62
3.3. (Inverse) document frequency ........................................................................................................ 64
3.4. Putting it together: tf * idf weighting............................................................................................... 64
3.5. Normalizing vector representations ................................................................................................ 65
4. Document classification using 𝑘-NN ........................................................................................................ 66
4.1. 𝓵𝟐 normalization ............................................................................................................................. 66
4.2. Cosine similarity .............................................................................................................................. 67
4.3. Using similarity in 𝒌-nn.................................................................................................................... 67
5. Practical examples.................................................................................................................................... 70
5.1. Naive text cleaning .......................................................................................................................... 70
6. Document classification ........................................................................................................................... 73
6.1. Sentiment analysis ........................................................................................................................... 73
6.2. Build a model ................................................................................................................................... 75
6.3. Test our model ................................................................................................................................ 82
Dimensionality reduction .............................................................................................................................. 83
1. The importance of dimensions ................................................................................................................. 83
Deep learning ............................................................................................................................................. 121
1. A brief history of AI ................................................................................................................................. 121
1.1. Alan Turing .................................................................................................................................... 121
1.2. Sci-project (1974) .......................................................................................................................... 122
1.3. The Sojourner Rover (1997) .......................................................................................................... 123
1.4. “Sub-symbolic” AI (1988-2016) ..................................................................................................... 123
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller clairevanroey. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $10.64. You're not tied to anything after your purchase.