100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary Business Intelligence and Data Management full course $10.24   Add to cart

Summary

Summary Business Intelligence and Data Management full course

 90 views  4 purchases
  • Course
  • Institution

Summary of 122 pages for the course Business Intelligence and Data Management at UVT (Full course notes.)

Preview 4 out of 122  pages

  • April 29, 2021
  • 122
  • 2020/2021
  • Summary
avatar-seller
BUSINESS INTELLIGENCE & DATA MANAGEMENT
Dr. Emiel Caron & Dr. Ekaterini Ioannou & Dr. Poonacha Medappa



TABLE OF CONTENTS

LECTURE 1: INTRODUCTION TO BI AND DATABASE SYSTEMS ........................................................................ 4

1. INTRODUCTION TO BUSINESS INTELLIGENCE ........................................................................................................... 4
1.1. Business Intelligence (BI) vs. Business Analytics (BA). ........................................................................ 4
1.2. Definition ............................................................................................................................................ 4
1.3. Business Intelligence architecture ...................................................................................................... 5
2. INTRODUCTION TO DATABASES ............................................................................................................................ 7
Text 1. Database systems: design, implementation, and management – Carlos Coronel, Steven Morris &
Peter Rob.......................................................................................................................................................... 7
2.1. Database systems ............................................................................................................................. 32
2.2. Relational databases ........................................................................................................................ 32
2.3. Trends in the database world ........................................................................................................... 33
3. READING: DATA WAREHOUSE DESIGN- MODERN PRINCIPLES AND METHODOLOGIES ................................................. 34

LECTURE 2: SQL & DATA WAREHOUSING ................................................................................................... 45

1. INTRODUCTION STRUCTURED QUERY LANGUAGE (SQL) ........................................................................................ 45
1.1. Data types ......................................................................................................................................... 45
1.2. Join types .......................................................................................................................................... 45
2. INTRODUCTION TO DATA WAREHOUSING............................................................................................................. 46
2.1. Why do we need a separate data warehouse? ................................................................................ 47
2.2. DW framework: components............................................................................................................ 47
2.3. DW framework: Architecture............................................................................................................ 50
2.4. Data warehouse architecture variants ............................................................................................. 51

LECTURE 3: OLAP BUSINESS DATABASES & BUSINESS DASHBOARDS ........................................................... 57

1. ETL (EXTRACTION, TRANSFORMATION, & LOAD) ................................................................................................. 57
1.1. Process steps ..................................................................................................................................... 57
1.2. Transformation ................................................................................................................................. 57
1.3. ETL tools ............................................................................................................................................ 59
2. OLAP BUSINESS DATABASES ............................................................................................................................. 60
2.1. Why OLAP? ....................................................................................................................................... 61
2.2. OLAP operators ................................................................................................................................. 62
2.3. Multi-dimentional modelling ............................................................................................................ 64
2.4. Central fact table .............................................................................................................................. 67
2.5. Dimension table ................................................................................................................................ 68
2.6. OLAP software vendors..................................................................................................................... 69
3. TECHNICAL OLAP ISSUES ................................................................................................................................. 70
3.1. Sparse fact table ............................................................................................................................... 70
3.2. History in the stars ............................................................................................................................ 71


1

, 4. BUSINESS DASHBOARDS ................................................................................................................................... 72
4.1. Two theoretical perspectives: ........................................................................................................... 72

LECTURE 4: DATA MINING INTRODUCTION ................................................................................................ 74

1. PYTHON REFRESHER ........................................................................................................................................ 74
2. DECISION MAKING WITH BIG DATA ..................................................................................................................... 75
3. DATA MINING METHODS ................................................................................................................................. 75
4. DATA ........................................................................................................................................................... 75
4.1. Data and types of variables .............................................................................................................. 76
4.2. Sources of data ................................................................................................................................. 77
5. DATA MINING PROCESS(ES)—OVERVIEW OF THE STEPS INVOLVED IN DATA MINING .................................................... 77
Step 1: Develop an understanding of the purpose of the data mining project ............................................. 77
Step 2: Obtain the dataset to be used in the analysis ................................................................................... 77
Step 3: Explore, clean, and preprocess the data ............................................................................................ 78
Step 4: Reduce the data dimension, if necessary........................................................................................... 78
Step 5: Determine the data mining task ........................................................................................................ 78
Step 6: Partition the data (for supervised tasks) ........................................................................................... 78
Step 7: Choose the data mining technique(s) ................................................................................................ 78
Step 8: Use algorithms to perform the task ................................................................................................... 78
Step 9: Interpret the results of the algorithms .............................................................................................. 78
Step 10: Deploy the model ............................................................................................................................. 79
5.1. SEMMA methodology ....................................................................................................................... 79
5.2. CRISP-DM .......................................................................................................................................... 79

LECTURE 5: REGRESSION MODELS ............................................................................................................. 81

1. DEFINITION: REGRESSION ANALYSIS .................................................................................................................... 82
2. LINEAR REGRESSION MODEL ............................................................................................................................ 82
3. VISUALIZATION............................................................................................................................................... 83
4. ORDINARY LEAST SQUARES (OLS) ..................................................................................................................... 83
5. MODEL USAGE AND POSSIBLE ISSUES .................................................................................................................. 84
5.1. Objectives for single/multiple regression ......................................................................................... 84
5.2. Issues................................................................................................................................................. 84

LECTURE 6: CLASSIFICATION...................................................................................................................... 85

1. WHAT IS CLASSIFICATION? ............................................................................................................................... 85
1.1. Classification vs. Clustering .............................................................................................................. 85
1.2. Classification process ........................................................................................................................ 85
1.3. Need for classification ...................................................................................................................... 86
1.4. Model induction and application ...................................................................................................... 86
1.5. Classification techniques .................................................................................................................. 87
2. NAÏVE BAYES FOR CLASSIFICATION ..................................................................................................................... 88
2.1. Naïve Bayes classifier........................................................................................................................ 88
2.2. Some concerns .................................................................................................................................. 90
2.3. Pros and cons .................................................................................................................................... 90

LECTURE 7: K NEAREST NEIGHBORS FOR CLASSIFICATION .......................................................................... 91

1. DETERMINING RECORD’S NEIGHBORS ................................................................................................................. 91
1.1. Euclidean Distance ............................................................................................................................ 91



2

, 1.2. Manhattan Distance ......................................................................................................................... 92
2. CHOOSING THE NUMBER OF NEIGHBORS, I.E., VALUE K .......................................................................................... 92
3. COMPUTING PREDICTION (FOR A NUMERICAL OUTCOME) ....................................................................................... 93

LECTURE 8: PERFORMANCE MEASURES ..................................................................................................... 95

1. EVALUATING PREDICTIVE PERFORMANCE (OF NUMERIC/CONTINUOUS PREDICTIONS) ................................................... 96
1.1. Prediction Accuracy measures .......................................................................................................... 96
1.2. Lift chart............................................................................................................................................ 97
2. JUDGING CLASSIFIER PERFORMANCE (CATEGORICAL VARIABLES EX. BIRDS) ................................................................ 98
2.1. Confusion matrix............................................................................................................................... 98
2.2. Accuracy (overall success rate) ......................................................................................................... 99
2.3. Receiver operating characteristic (ROC) ........................................................................................... 99
2.4. Cost Matrix (as response to the limitation of Accuracy) ................................................................ 100
2.5. Kappa statistic for multiclass prediction......................................................................................... 101
2.6. Precision and Recall ........................................................................................................................ 102
2.7. 𝑭𝟏-measure .................................................................................................................................... 103

LECTURE 9: DECISION TREES.................................................................................................................... 104

1. MAIN PROCESSING........................................................................................................................................ 104
1.1. Induction (with a Greedy Strategy)................................................................................................. 105
2. PROS AND CONS OF DECISION TREES ................................................................................................................. 109

LECTURE 10: ASSOCIATION RULES ........................................................................................................... 110

1. RULES ........................................................................................................................................................ 110
2. TWO-STAGE PROCESS.................................................................................................................................... 111
2.1. Generation of frequent itemsets → Apriory algorithm .................................................................. 111
2.2. Selecting the strong rules i.e., criteria for judging the strength of the rules.................................. 112
3. ALTERNATIVE DATA REPRESENTATION (TO SPEED UP EXECUTION) ........................................................................... 113

LECTURE 11: CLUSTERING ....................................................................................................................... 114

1. CLUSTER ANALYSIS ........................................................................................................................................ 114
1.1. Issues for clustering ........................................................................................................................ 114
2. REPRESENTATION & DISTANCE........................................................................................................................ 115
2.1. Distance .......................................................................................................................................... 115
3. TWO TYPES OF CLUSTERING ............................................................................................................................ 117
3.1. Hierarchical clustering .................................................................................................................... 117
3.2. Partitional Algorithms: k means ..................................................................................................... 120




3

, LECTURE 1: INTRODUCTION TO BI AND DATABASE SYSTEMS

1. INTRODUCTION TO BUSINESS INTELLIGENCE


Data Information Knowledge



Methods of BI:

1. Descriptive analytics: use data to understand past and present.
Retrospective
2. Diagnostic analytics: explain why something happened.

3. Predictive analytics: predict future behavior based on past
performance.
Prospective
4. Prescriptive analytics: make decisions or recommendations to
achieve the best performance.

Functions of BI: Marketing analytics, Sales analytics, HR analytics, Financial analytics, Supply chain
analytics, Accounting analytics ….



1.1. BUSINESS INTELLIGENCE (BI) VS. BUSINESS ANALYTICS (BA).

These terms are often fighting for dominance, distinguished by the following view:

- BI = data warehousing + descriptive analytics
- BA = predictive + prescriptive analytics

However, the prof thinks they are too similar to really be separated, as both are examples of a Decision
Support System (DSS).



1.2. DEFINITION

= Transforming data into meaningful information/knowledge to support business decision-
making. (general)
= BI is an umbrella term that combines the processes, technologies, and tools needed to
transform data into information, information into knowledge, and knowledge into plans that
drive profitable business action. (process view)
= BI is information and knowledge that enables business decision-making. (output view)




4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller clairevanroey. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $10.24. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67866 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$10.24  4x  sold
  • (0)
  Add to cart