100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Statistiek 2 de jaar $6.96   Add to cart

Summary

Samenvatting Statistiek 2 de jaar

 19 views  1 purchase
  • Course
  • Institution
  • Book

Samenvatting van lessen en boek

Preview 4 out of 47  pages

  • Yes
  • May 24, 2021
  • 47
  • 2020/2021
  • Summary
avatar-seller
1 Hoofdstuk 1: inductieve statistiek in onderzoek
1.1 Doel
Statistiek= hulpmiddel om gegevens te verzamelen, classificeren, samenvatten, organiseren,
analyseren, interpreteren. Het biedt ons regels om consequent en verantwoord conclusies te trekken
over wetmatigheden in gedrag
Beschrijvende= gegevens proberen te beschrijven en gegevens Inductieve= de gegevens
proberen samen te vatten, uitdrukken in grafieken, tabellen, gebruiken om uitspraken te
kengetallen zoals mediaan. kunnen maken.
1.2 Empirische cyclus
1) Vraag/probleemstelling
Blondines zijn even intelligent dan
brunettes
2) Operationaliseren= meetbaar maken
Brunettes zijn intelligenter dan blondines
3) Gegevens verzamelen steekproef trekking
IQ-af van groep brunettes en groep
blondines
4) Beschrijvende
IQ brunettes= 102, IQ blondines= 90
5) Inductieve
Is 102 significant hoger dan 90?
1.3 Probleem inductieve statistiek
Men is nooit in staat gegevens te verkrijgen van de complete populatie daarom steekproeftrekking.
Kernprobleem hierbij: welke garantie is er dat conclusies ook generaliseerbaar zijn voor de rest van
populatie?
Niet erg om geen sluitende zekerheid te hebben over de conclusies zolang er geweten is hoe groot de
onzekerheid is.= hoe groot is de kans dat conclusies fout zijn?
Bv. op basis van de steekproef kan er met 95 % zekerheid geconcludeerd worden dat 40 jarige moeders
meer een autoritaire opvoedingsstijl hanteren dan 25 jarige moeders.

1.4 Statistische significantie
Twee mogelijkheden bij hypothesetoetsing:

Gevonden verschil is eerder klein en te wijten aan toevallige Verschil is groot genoeg=
variabiliteit significant
1.5 Kansberekening


populatie A = populatie B




Steek-proef Steek-proef
>
A B

,Verschillen de scores voldoende om te concluderen dat x een invloed heeft op y, m.a.w. is er een
significant verschil?  ervan uitgaan dat er geen verschil (x heeft geen invloed op y)
Hoe groot is de kans dat er geen verschil is ?
kans groot dan is er wellicht geen echt verschil kans klein is wel een verschil
= geen significant verschil =wel een significantie verschil
1.6 Toetsen
De kans wordt berekend op basis van een kansverdelingen. Het al dan niet grote en kleine kans ligt op
5%=0.05

1.7 Misbruik van statistiek
Onduidelijke steekproef Gebrek aan context Interne validiteit: Laat het
Bv. “95% van de Belgen is tevreden Bv. “Duracell-batterijen gaan onderzoeksopzet toe om causale
over Activia” tot 5 maal langer mee conclusies te trekken?
conclusie: Statistiek is slechts een hulpmiddel en niet het doel op zich

1.8 Validiteit
Intern= Mate waarin we met een onderzoeksontwerp Extern= mate waarin resultaten van het
causale conclusies kunnen trekken over effect van OV op onderzoek kunnen gegeneraliseerd worden
AV over:
Voorwaarde: 4. (Onderzoek)situaties
1. Geen andere verklaringen voor gevonden verband 5. Methoden
2. Oorzaak moet in tijd voorafgaan aan gevolg 6. Tijd
3. Effect van OV op AV in voorspelde richting 7. Populaties
Alternatieve verklaringen uitsluiten bij experimenteel onderzoek:
Randomiseren Voormeting & nameting Controleren voor storende variabele
= methodologie: noodzakelijk om juiste conclusies te trekken, statistiek alleen is onvoldoende

2 Kansverdeling en kansberekeningen
2.1 Kansverdelingen
Frequentieverdeling= voorstelling waarin Kansverdeling= verdeling die de mogelijke uitkomsten van
elke waarde aangeduid wordt hoe vaak een variabele met de bijhorende kansen weergeeft.
deze voorkomt weergave hypothetische realiteit/data, kans
weergave geobserveerde realiteit/data,  lees je af hoe groot de kans zou zijn om een waarde te
frequentie observeren binnen een bepaalde range
lees je af hoe vaak een bepaalde waarde Kans = waarschijnlijkheid om een bepaalde gebeurtenis
geobserveerd werd in een steekproef te observeren, uitgedrukt met een getal tussen 0 en 1

Hoe meer observaties
binnen één steekproef
hoe meer de
frequentieverdeling zal
gaan lijken op de
theoretische kansverdeling.
Bij oneindige aantal
worpen identiek aan
elkaar.

, Gemiddelde Verwachte waarde




Deviatie




2.2 Steekproefgemiddelde
1) Populatie
2) Trek een steekproef van grootte n  2
3) Bereken het gemiddelde
4) Trek uit dezelfde populatie terug een steekproef van grootte n  2
5) Bereken van die steekproef het gemiddelde Je hebt dan een tweede gemiddelde dat waarschijnlijk verschilt
van het eerste
6) Blijf steekproeven van grootte n  2 trekken en bereken telkens het steekproefgemiddelde.
7) Al die gemiddelde in een grafiek steekproefverdeling (steekproefgemiddelde)
8) Als je daarvan het gemiddelde berekent dan valt dat (in de long run) exact samen met het gemiddelde van
de populatie waaruit je trekt. Voor elke steekproef ( X1, X2,…) uit eender welke populatie X geldt :
Gemiddelde van het steekproefgemiddelde = aan het populatiegemiddelde

Waarde steekproef Gemiddelde van steekproef kans Hoe groot is de kans dat een bepaalde
2-2 (2+2)/2=2 1/ 9 steekproefgemiddelde voorkomt?

2-4 (2+ 4)/ 2=3 1/ 9

2-6 (2+6)/2=4 1/ 9

4-2 (4+2)/ 2=3 1/ 9
4-4 ( 4+ 4)/2=4 1/ 9

4-6 (4+6)/2=5 1/ 9

6-2 (6+ 2)/2=4 1/ 9

6-4 (6+ 4)/2=5 1/ 9
6-6 (6+ 6)/2=6 1/ 9

, 2.3 Steekproefverdeling
Verwachte waarde= populatiegemiddelde μ

Gemiddelde van de steekproef is
een zuivere schatter van het
gemiddelde van de populatie
Schatter: we schatten met behulp
van het steekproefgemiddelde het
populatiegemiddelde
Zuiver: geen systematische
afwijkingen

(2 + 4 + 6)/3 = 4

(1/9 x 2) + (2/9 x 3) + (3/9 x 4) + (2/9 x 5) + (1/9 x 6) = 4

Standaardafwijking van steekproevenverdeling = standaardfout van gemiddelde X


SE X  X  Standaardafwijking van populatie
N
steekproefgrootte


Standaardafwijking van gemiddelde van X

Standard Error of standaardfout van het gemiddelde


Zelfde formule als deviatie alleen gem veranderen door
Formule Z- waarde:




2.4 Vorm van de steekproefverdeling
Centrale Limiet Theorema= wanneer je een groot aantal steekproefgemiddelden berekent vanuit een
kansverdeling die niet noodzakelijk normaal verdeeld is, dat de verdeling van al deze
steekproefgemiddelden bij benadering normaal verdeeld zal zijn. Hoe groter de steekproef, hoe meer de
normale verdeling benaderd wordt.
2.4.1 Voorwaarde
Populatie normaal Ja Ja nee

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller pavitravandenhoven. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $6.96. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67474 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$6.96  1x  sold
  • (0)
  Add to cart