100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Summary Statistics 2 Notes $9.96
Añadir al carrito

Resumen

Summary Statistics 2 Notes

1 revisar
 3 veces vendidas
  • Grado
  • Institución
  • Book

Summary of lecture notes and some additional information from the book. Organized by week which is dedicated to a topic (7 total)

Última actualización de este documento: 3 año hace

Vista previa 4 fuera de 85  páginas

  • No
  • 7, 6, 12
  • 26 de mayo de 2021
  • 30 de mayo de 2021
  • 85
  • 2020/2021
  • Resumen

1  revisar

review-writer-avatar

Por: fennaschoemaker • 3 año hace

avatar-seller
p>0.05 = not significant – accept null – p is big
p<0.05 = significant – reject null – p is small


Week one: 1-Way ANOVA

Comparing means of groups: Do two groups have the same population
mean? We can use a t test and find out with its p-value
Example: is there difference in the effectiveness between two methods for
reading lessons for second-graders?

Do three or more groups have the same population mean? We can use
ANOVA

1-way ANOVA can be used for this type of question:
• Do three or more groups have the same population mean and are
the populations classified according to one factor?
o Eg: Is there a difference in the effectiveness between three
methods for reading lessons for second-graders?
o Using multiple t-tests, comparing 3 groups but that is not ideal


Issue with multiple t-tests: inflation of surprise
• When one performs multiple comparisons on the same data, the
probability of finding a surprising result increases --- change of type
I error increases

Consider 3 groups: A, B, C. We have 3 pairwise comparisons: (A, B), (A, C), (B,
C)
• p<0.05, so probability of no Type I error: 95% -- 5% chance of false
positive
• Each test is independent, so for 3 groups so you have to run 3 t-tests
o Probability of no Type I: 0.95*0.95*0.95 = 0.857
o Probability of Type I error is 1-0.857 = 14.3% -- much higher than
5%

Why we use ANOVA instead
___________________________________

ANOVA stands for ANalysis Of VAriance
• The name refers to variance, yet this technique is about comparing
the means (of 3 or more groups)

, • Predictor variable(s) are categorical factors (in 1 way ANOVA, 1
predictor)
• ANOVA is a family of statistical tests.
• 3 types:
1. 1-way
i. Observations are independent
ii. 1 experiment condition
2. Factorial
i. Observations are independent
ii. 2 or more experimental conditions. We can measure:
1. Individual effects
2. interactions
3. Repeated measures
i. Each subject is tested more than once, or
ii. Each stimulus is presented more than once

Variable types
• Between-group: different groups or subjects assigned to different
conditions
o Eg: patients taking 3 different treatments
• Within-subject: the same subjects tested in more than 1 condition
o Eg: subjects reacting to 3 different types of words (each
subject sees all the types)

What this implies?
• Only between-group variables: 1-way and factorial ANOVAs
• Only within-subject: repeated measures ANOVA
• Both types: mixed ANOVA (not covered in course)


~ ANOVA is a special case of linear regression (LR). In fact R implements
ANOVA as LR
• everything you can do with ANOVA you can do with regression
~ ANOVA is in disuse in favour of LR
• Still, you will find ANOVAs in papers so you should be able to
interpret them

Assumptions:
• The observations are independent from each other
• The response variable is at least interval-scaled
o Its numerical

,• The residuals are normally distributed (each sample is drawn from a
normally distributed population)




o
▪ We see if the residuals follow a normal distribution
▪ Residuals is the error – how far the model is from the
data




o
▪ 𝐻0 : each groups follows normal distribution
▪ Dependent, independent
▪ Groups 1 and 2 do not follow normal distribution (𝑝 <
0.05)
▪ P needs to be bigger than 0.05 to follow normal
distribution
• The variance is homoscedastic
o the variances in all groups are (roughly) equal
o so we want a not significant p value p>0.05

, o
▪ Variance assumptions is not met
o Fligner-Killeen test: for non-normal data
▪ Alternative for levene when data is not normal
distributions





• Data is not normally distributed and variance is
not the same in all the groups

Alternative tests when data is not normally distributed, and variance are
not the same throughout the groups
1. Variance not homogeneous:
1. Welch one-way test
2. oneway.test()
2. Non-normality:
1. Kruskal-Wallis,
2. kruskal.test()
3. Both assumptions violated: (in the case rn)
1. non-parametric ANOVA,
2. oneway_test()





• Still get a significant result

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller lamotte01. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for $9.96. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 15 years now

Empieza a vender

Vistos recientemente


$9.96  3x  vendido
  • (1)
Añadir al carrito
Añadido