Dit is een handig overzichtje hoe je de rijen of reeksen kan vinden en de verschillende convergentie tesen voor alle reeksen en rijen (ook machtreeksen, McLaurin ontwikkeling...) gaat over p11-14, 81-120 deel 2 wiskunde
Getallenrij Getallenreeks
∞
{un} = u1, u2, …, un …
∑ un = u 1 + u2 + … + un + … : berekenbaar? reekssom
n =1
n
Gedrag:
Partieelsom: Sn = ∑ u i = u1 + u2 + … + un
o Convergent: nlim
→∞
un bestaat en is eindig (∈ R ) i=1
∞
Convergentie
o Divergent: nlim un = ± ∞ Verband reekssom en getallenreeks : ∑ u n = nlim
→∞
Sn
→∞ n =1
o Onbepaald: nlim
→∞
un bestaat niet Gedrag getallenreeks:
o Convergent: reekssom S = nlim
→∞
Sn ∈ R
o Divergent: reekssom S = nlim
→∞
S n=± ∞
o Onbepaald: reekssom S = nlim
→∞
S n bestaat niet
∞ ∞
Speciale Rekenkundige {un}
Veelvoud getallenreeks: ∑ u n convergent ⇔ ∑ α un convergent (α ∈ R)
getallenrijen getallenrij n =1 n=1
∞ ∞
Deel getallenreeks: ∑ u n convergent ⇔ ∑ α un convergent (k ≥ 1)
n =1 n =k
∞
Algemene term: un = u1 + (n – 1).d
Voorwaarde convergentie: ∑ u n convergent ⟹ nlim
→∞
un=0
n =1
Notatie: d = un – un-1 (n ≥ 2) Speciale Rekenkundige reeks ∞
∑ un
getallenreekse n =1
Gedrag getallenrij : Algemen term: un = u1 + (n – 1).d, n ≥ 1
1
, o Convergent: d = 0, nlim
→∞
un=u 1 n
Partieelsom: Sn =
n
(u1 + un), n ≥ 1
2
o Divergent: d ≠ 0, nlim
→∞
un=±∞
ALTIJD divergent, tenzij elke term = 0
∞
Meetkundige {un} Meetkundige reeks
∑ un
getallenrij n =1
Algeme term: un = u1 . qn-1 Algemene term : un = un . qn-1, n ≥ 1
un Partieelsom :
Notatie : q = (n ≥ 2)
un−1 o q = 1 : Sn = n . u 1
n
o q ≠ 1 : Sn = u1 .
1−q
1−q
Voor n ≥ 1
Gedrag getallenrij : Gedrag getallenreeks:
o Convergent : o Convergent: -1 < q < +1
o -1 < q < +1, nlim
→∞
un=0
o Reekssom: S =
u1
1−q
o q = +1, nlim
→∞
un=u 1
o Divergent : q ≥ 1
o Divergent : q > 1, nlim
→∞
un=±∞ o Onbepaald: q ≤ -1
o Onbepaald : q ≤ -1, nlim
→∞
un bestaat niet
∞
Hypeharmonische {un} Hypeharmonische reeks
∑ un
getallenrij n =1
2
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller xnobiajanssens. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $3.54. You're not tied to anything after your purchase.