100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Ejercicios resueltos Álgebra $22.02
Add to cart

Exam (elaborations)

Ejercicios resueltos Álgebra

 18 views  0 purchase
  • Course
  • Institution

Apuntes sobre Matemáticas

Preview 1 out of 1  pages

  • June 9, 2021
  • 1
  • 2019/2020
  • Exam (elaborations)
  • Questions & answers
avatar-seller
Control 1 [1AT1-1AT2] AiG/EETAC/UPC 11-10-18
1. Considerem els polinomis p(z) = z 5 + 7z 4 + 11z 3 − 9z 2 + 54 i q(z) = 4z 6 − 9z 4 + 4z 2 − 9.

(a){20pt} Troba totes les arrels complexes de p(z) i expresseu-les tant en forma binòmica com en forma exponencial.
√ π √ π
p(z) = (z + 3)3 · (z 2 − z + 2) = 0 ⇒ z ∈ {−3, 1 + j, 1 − j} ⇔ z ∈ {3eπj , 2e 4 j , 2e− 4 j }
(b){20pt} Dona la factorització de q(z) en factors irreductibles a C[x] i a R[x].
πj 5πj
[pista: e 4 , e 4 i − 32 són tres de les seves arrels.]
q(z) = (2z + 3) · (2z − 3) · (z 4 + 1)
√ √ √ √ √ √ √ √
2 2 2 2 2 2 2 2
q(z) = (2z + 3) · (2z − 3) · (z − 2 − 2 j) · (z − 2 + 2 j) · (z + 2 + 2 j) · (z + 2 − 2 j)
√ √
2 2 1 2 2 1
q(z) = (2z + 3) · (2z − 3) · ((z − 2 ) + 2 ) · (z + 2 ) + 2)
√ √
q(z) = (2z + 3) · (2z − 3) · (z 2 − 2z + 1) · (z 2 + 2z + 1)

——————————————————————————————————————————————————
2. Considerem la familia uniparamètrica de sistemes d’equacions lineals homogènies A · x = o d’ordre 4x4 i paràmetre λ on:
    
0 −4 0 −1 x 0
 0 2 0 0   y
, o=  0 
  
C=  , A = C − λ · I4 , x= 
 0 0 0 0   z   0 
4 8 −12 4 t 0

(a){20pt} Quan λ = 2, classifica i resol aquest s.e.l.h.
 
−2 −4 0 −1
 0 0 0 0 
λ = 2 ⇒ A=  
 0 0 −2 0 
4 8 −12 2

r(A) = 2 ⇒ Compatible Indeterminat, amb dos graus de llibertat.
Solució general: (x, y, z, t) = (λ, µ, 0, −2λ − 4µ)
Subespai vectorial de solucions: W = h{(1, 0, 0, −2), (0, 1, 0, −4)}i
(b){20pt} Esbrina per quins valors del paràmetre λ aquest s.e.l.h. és compatible indeterminat.
−λ −4 0 −1
0 2−λ 0 0
= λ4 − 6λ3 + 12λ2 − 8λ = λ(λ − 2)3
0 0 −λ 0
4 8 −12 4 − λ

Per tant, aquest s.e.l.h. és compatible indeterminat si i només si λ ∈ {0, 2}.

——————————————————————————————————————————————————
3. Considerem els subespais vectorials de R3 :

U = {(x, y, z) ∈ R3 : x + y − 2z = 0, 2x + y − 3z = 0} ,

V = h{~v1 , ~v2 }i, on: ~v1 = (2, 4, 3), ~v2 = (3, −1, 1), i

W = {(x, y, z) ∈ R3 : 2x + y − z = 0} ,

(a){20pt} Calcula la dimensió, les equacions implı́cites i una base dels subespais vectorials U , V , U + V i U ∩ V .
U = h(1, 1, 1)i V = {(x, y, z) ∈ R3 : x + y − 2z = 0 Per tant, U ⊂ V .
Per tant, U ∩ V = U , U + V = V .
(b){20pt} Esbrina si el subespais vectorials U i W són suplementaris.
W = h{(1, 0, 2), (0, 1, 1)}i

1 1 1
1 0 2 6= 0 ⇒ dim(U + W ) = 3 ⇒ dim(U ∩ W ) = 0 ⇒ R3 = U ⊕ V
0 1 1

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller josluisgonzlez. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $22.02. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

52510 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$22.02
  • (0)
Add to cart
Added