Summary Introduction to Research in Marketing (Fall)
17 views 1 purchase
Course
Introduction To Research In Marketing (328049M6)
Institution
Tilburg University (UVT)
Book
Multivariate Data Analysis: Pearson International Edition
Summary of the course Introduction To Research in Marketing (fall) with the following subjects:
- Introduction, data exploration and visualization
- ANOVA
- Cluster analysis
- Factor analysis
- Logistic regression
- Conjoint analysis
- Multidimensional scaling
MMSR Trial exam + Answers 2024/2025 - Methodology for marketing and strategic management Radboud
TIU Intoduction to Research in Marketing ALL lectures summary
ALL key words MMSR
All for this textbook (18)
Written for
Tilburg University (UVT)
Marketing Management Or Marketing Analytics
Introduction To Research In Marketing (328049M6)
All documents for this subject (6)
Seller
Follow
dilemmasmit
Reviews received
Content preview
1. INTRODUCTION, DATA EXPLORATION AND VISUALIZATION
Total error What you observe = true value + sampling error + measurement error + statistical
framework error (you don’t observe). If you mess up the errors, your results will be biased
Statistics Characteristics of the sample (estimates the parameters)
Parameters Characteristics of the population
Coverage error Target population (voters) to frame population (everyone with telephone)
Sample error Frame population (everyone with telephone) to sample population (random digit)
Non-response error Sample population (random digit) to respondents (accept the call), biggest error
Post-strati cation Making your sample close to your population (e.g. when population 50% female
weights and sample 80% female), weighting this to come to better sample and outcome
Measurement scales Non-metric and metric (continuous), right statistical technique depends on this
Non-metric Nominal (categorical) and ordinal —> outcomes can be categorical (labels) or
directional (only measure direction of response, e.g. yes/no)
Metric Interval and ratio —> continuous scales not only measure direction or
classi cation, but intensity as well (e.g. strongly agree or somewhat agree)
Nominal Number only serves as label for identifying objects in mutually exclusive (not at
same time) and collectively exhaustive (at least one) categories (e.g. SNR,gender)
Ordinal Numbers are assigned to objects to indicate relative positions of characteristics
of objects, but not magnitude of di erence between them (e.g. preference, ranks)
Interval Numbers are assigned to objects to indicate relative positions of some
characteristics of objects with di erences between objects being comparable,
zero point is arbitrary (e.g. Likert scale, temperature Fahrenheit/Celcius)
Ratio Most precise scale, absolute zero point, has all advantages of other scales (e.g.
weight, height, age, income, temperature Kelvin)
Summated scales Measuring attitudes/feelings/beliefs that are more abstract and di cult than age
and income (multiple question to capture everything (reduce measurement error))
Validity and reliability Validity: measure what it’s supposed/wanted to measure? Does it make sense?
Reliability: is the outcome stable? Do results change if changing variables?
Statistical error Two outcomes: fail to reject null (null true) and reject null. Two types of error:
(hypothesis testing) - Type I: in reality nothing is going on (null true) but data shows something is
going on (reject null), false positive (doctor says man is pregnant, but not true)
- Type II: in reality something is going on and data shows nothing is going on,
false negative (female is pregnant, but doctor says she is not), setting power
P-value (alpha) Probability of observed data/statistic given that null hypothesis is true (< 0.05),
so what is the chance that we found the data that we did if null is true in reality
Exploration Always explore data before running any model (recode missings, reverse code
negatively worded questions, check range variables, check mutually consistency)
Visualization Exploration, understanding/making sense of data, communicating results (charts)
fi fi ff ff ffi
, 2. ANOVA
1. De ning objectives Test if there are di erences in the mean of a metric (interval/ratio) dependent
variable across di erent levels of one or more non-metric (nominal/ordinal)
independent variables (‘factors’), one-way/two-way ANOVA (experiments)
2. Designing study 2.1 Sample size
Determine e ect size with previous literature or using Cohen’s F
Signal = between groups
Noise = within a group
How smaller the e ect, how larger the sample needs to be and vice versa
Sensitivity analysis: how changes my sample size if e ect size changed?
2.2 Interactions
Interaction is the e ect of one variable on the DV is dependent on another
(interaction e ect), interaction between IVs (treatment/categorical variables)
2.3 Use covariates (control variables) by doing ANCOVA
Covariates a ect DV separately from treatment variables (IVs), requirements:
- Pre-measure (before outcome, otherwise they may intervene)
- Independent of treatment
- Limited number (< (0.1) * # observations - (# populations - 1)
3. Checking assumptions 3.1 Independence (most important)
Are the observations independent? —> when there is no pattern in the plot
A ects your estimates and standard errors
- “Between-subjects” design: each unit of analysis (row, respondent) sees
only one combination of IVs
- “Within-subjects” design: each unit of analysis sees all treatments
(counterbalance order of treatments, allow di erences)
3.2 Equality of variance/homoscedasticity (Levene’s test)
Is the variance equal across treatment groups? —> not reject null (> 0.05)
A ects your standard errors
What if homoscedasticity rejected?
1. If sample size is similar across treatment groups —> ANOVA robust (ok)
2. Transform dependent variable (e.g. take log(DV)) —> redo test
3. Add covariate —> ANCOVA, redo test
3.3 Normality (least important)
Is the DV approximately normally distributed? —> not reject null (> 0.05)
A ects your standard errors only if sample is small
What if normality rejected?
1. Large sample —> ANOVA robust
2. Small sample —> transform DV to make distribution more symmetric
4. Estimating model Calculation F-value (variation between groups larger than within groups?):
Mean sum of squares between groups (MSSB)
Mean sum of squares within groups (MSSW)
Large F (high signal/low noise): reject null of no di erences across groups
ff
fi ffffff ffffff ff ff ff
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller dilemmasmit. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $5.83. You're not tied to anything after your purchase.