100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Class Notes Causal Analysis Techniques (424201)

Beoordeling
-
Verkocht
-
Pagina's
15
Geüpload op
25-06-2021
Geschreven in
2019/2020

The summary includes contents of all lecture slides and in-class elaborations. I scored an 8.5 on the exam with these notes.

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
25 juni 2021
Aantal pagina's
15
Geschreven in
2019/2020
Type
College aantekeningen
Docent(en)
E. nagelkerke
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Causal Analysis Techniques Study Summary 2019


SNHT
Significant Hypothesis Testitng; Statistical Hypotheses
- Null hypothesis: means of all groups are the same; M = 0
o Group membership (x) canot explain systematic differences in Y scores
- Alternative hypothesis: there is at least one difference;
M!= M1 = M2; M = M1 != M2; M != M1 != M2

T-test: significance testing for 2 variables (2 means)

Type 1 Error
= the mistake of finding an effect in the sample that does not exist in the population
= falsely rejecting H0
- when we find a value that is so extreme that it is highly unlikely that H0 it is true
- alpha: Proportion of possible samples from the population that are extreme, when
we assume H0 is true (alpha = 0.5 à significant difference in 1/20 despite H0)

Type II Error:
= the mistake of not finding an effect in a sample that exists in the population
= falsely rejecting H1

Inflated Type 1 Error:
- Problem: 5% mistake is allowed every time; so something could accidentially be
found if done many times (by sampling extreme values)
- When we do multiple tests, we can compute probability of Type I Error
1 – (1 – alpha) ^c

à better to use ANOVA or F-test (1 big test that compares all gropus at once)


1. ANOVA – Analysis of Variance
- categorical X
- few variables
- simple relationship

Goal: relating the scores of a variable to the scores of another variable (systematic
differences), make a statement about possible – significant – differences between the mean
score of those groups

Variance Components
- Between-group deviation/ variance (belong to different groups)
o All factors that cause systematic differences between groups
o E.g. company divisions: same manager, office building, colleagues, workflow
- Within-group deviation/ variation
o All other factors that cause differences between group-members
o E.g. company divisions: sex, age, salary, personality, relationships, habits,…




1

, Causal Analysis Techniques Study Summary 2019

Grand mean
*Means = best prediction, if nothing is known about a group
Calculated of Y variables: sum of all scores divided by sample size

Group mean
Sum of all scores of one group devided by group size

Deviation Scores
1. Total Deviation: Deviation of an individual score from the grand mean
𝒀(𝒊𝒋) – 𝑴(𝒚)
à + or – values

Total deviation has 2 components:
- between group deviation: How different is a certain group compared to other
groups?
- within group deviation: How different is a particular member compared to other
members of a group?

2. Within-group deviation: Deviation of an individual score from the group mean
(𝒀(𝒊𝒋) – 𝑴(𝒊)) = 𝜺(𝒊𝒋)
𝜀 (ij) = residual Error

3. Between-group deviation: Deviation of the group mean from the grand mean
(𝑴(𝒊) – 𝑴(𝒚)) = 𝜶 (𝒊)
𝛼(i) = Effect for group i

à Total deviation = (𝒀 𝒊𝒋 − 𝑴 𝒚 ) = (𝒀 𝒊𝒋 − 𝑴 𝒋 ) + (𝑴 𝒋 − 𝑴 𝒚 )
= within group deviation + between group deviation

Sum of Squares
- overall difference between people
- deviation scores only pertain to one individual
- combine all deviation scores into one number (square before summing, otherwise it
sums to 0)

Sums of squares within
= within-group squared deviation summed over the group and then sum all groups

Sum of squares between
= multiply SSbetween for each group member (deviation (per person) = individual score to
group mean to grand mean)
*if people are added to groups, the SS increases (unless they score the mean)

Degrees of freedom:
- adjust sample size to match amount of independent information (last bit can always
be computed)
Df within = N-k Df between = k-1



2
$10.90
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
Eightball

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
Eightball Tilburg University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
4 jaar
Aantal volgers
1
Documenten
4
Laatst verkocht
2 jaar geleden

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen