100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting statistiek 4 (NEDERLANDS) () $5.27
Add to cart

Class notes

Samenvatting statistiek 4 (NEDERLANDS) ()

 237 views  18 purchases
  • Course
  • Institution

Alle te kennen leerstof (eigen nota's en slides) zijn verwerkt in 1 document, in het NEDERLANDS. Deze samenvatting omvat hoofdstuk 1- 13 met tabellen/ grafieken/ tekeningen (behalve hoofdstuk 12, niet te kennen). Alle Engelse slides zijn vertaald naar het Nederlands en gebundeld in 1 document.

Preview 6 out of 174  pages

  • August 10, 2021
  • 174
  • 2020/2021
  • Class notes
  • Tuerlinckx
  • All classes
avatar-seller
Statistiek 4
Francis Tuerlinckx


Inhoudsopgave

Chapter 3 contrasten: Wees specifieker! ................................................................................................................ 2

Gegevens voorbeeld MDD: Again treatment of depression .................................................................................... 2
Gegevensvoorbeeld MDD: beperkingen ...................................................................................................................... 3

Doel (van dit hoofdstuk) ......................................................................................................................................... 3

Terminologie .......................................................................................................................................................... 3

1 gepland contrast.................................................................................................................................................. 6
Afleiding van de SP-verdeling van ! ........................................................................................................................... 6
Statistische inferentie voor " ...................................................................................................................................... 8
Statistische inferentie voor ": CI ................................................................................................................................. 8
Statistische inferentie voor ": hypothese test ............................................................................................................. 9
Statistische inferentie voor ": Effectgrootte ............................................................................................................. 10
Statistische inferentie voor ": Street fighting statistics ............................................................................................ 11

Het veelvuldig testen van vele geplande contrasten ............................................................................................. 12
Multiple testing: many planned contrasts ................................................................................................................ 12

Paarsgewijze contrasten....................................................................................................................................... 15

Posthoc contrasten en fishing expeditions............................................................................................................ 18

Enkele bijkomende zoektochten naar contrasten ................................................................................................. 19

Class project ......................................................................................................................................................... 21

Chapter 4: sample size planning ........................................................................................................................... 23

Datavoorbeeld: Moral self-licensing ..................................................................................................................... 24

Doel ..................................................................................................................................................................... 25

Basisbegrippen van het statistical power/ onderscheidingsvermogen .................................................................. 25
De centrale en niet-centrale #-distributie ................................................................................................................. 26
De waarschijnlijkheid van $% verwerpen als dat waar is? ....................................................................................... 29
De waarschijnlijkheid van $% verwerpen als dat niet waar is? ................................................................................ 29
Power is afhankelijk van &, ( en effectgrootte ......................................................................................................... 30
Berekeningen van de steekproefomvang .................................................................................................................. 32

Discussie .............................................................................................................................................................. 34



1

,Chapter 5: Assumptions: There is no free lunch .................................................................................................... 35

Datavoorbeeld: Moral self-licensing ..................................................................................................................... 36

Doel ..................................................................................................................................................................... 36

Assumpties en uitschieters ................................................................................................................................... 37
Robuustheid tegen schendingen van assumpties...................................................................................................... 37
Homoscedasticiteit .................................................................................................................................................... 38
Normaliteit ................................................................................................................................................................ 39
Onafhankelijkheid ..................................................................................................................................................... 39
Uitschieters ............................................................................................................................................................... 39

Checken van de assumpties .................................................................................................................................. 39

Hoe om te gaan met geschonden assumpties en uitschieters?.............................................................................. 41
Transformaties .......................................................................................................................................................... 42
ANOVA op rangorde .................................................................................................................................................. 42
Simulatie gebaseerde methoden............................................................................................................................... 43
Gerandomizeerde tests ........................................................................................................................................ 43
Bootstrap .............................................................................................................................................................. 44

Hoe vermijdt u “the garden of forken paths”? ...................................................................................................... 45

Chapter 6: Multifactoriële ANOVA........................................................................................................................ 46

Datavoorbeeld: vruchtbaarheid, relaties en religiositeit ....................................................................................... 47

Doel ..................................................................................................................................................................... 48

Exploratieve analyse ............................................................................................................................................ 48

Introductie & notatie ........................................................................................................................................... 49
Gebalanceerd design ................................................................................................................................................. 50
Gebalanceerd design: illustratie ........................................................................................................................... 50
Gebalanceerd design: Vruchtbaarheidsgegevens ................................................................................................ 50
Gebalanceerd design: SP gemiddelden ................................................................................................................ 50

Interactie & hoofdeffect ....................................................................................................................................... 51
Geen interactie .......................................................................................................................................................... 51

Effect parameters ................................................................................................................................................. 54

Analyse van een gebalanceerd two-way factorieel design .................................................................................... 56
Interactie tussen A en B............................................................................................................................................. 56
Stap 1: Modellen en hypothesen ......................................................................................................................... 56
Stap 2: Keuze van de toetsstatistiek..................................................................................................................... 58
Stap 3: de steekproefverdeling van ) onder *0 .................................................................................................. 59
Stap 4: Bepaal de grootte van uw effect .............................................................................................................. 59
Hoofdeffect van A ..................................................................................................................................................... 60
Stap 1: Modellen en hypotheses .......................................................................................................................... 60



2

, Stap 2: Keuze van de toetsstatistiek..................................................................................................................... 61
Stap 3: de steekproefverdeling van ) onder *0 .................................................................................................. 61
Stap 4: Bepaal de grootte van uw effect .............................................................................................................. 61

Wat te doen als het design ongebalanceerd is? .................................................................................................... 62

The data multiverse ............................................................................................................................................. 64

Enkele verschillende topics .................................................................................................................................. 65

Chapter 7: Repeated measures ............................................................................................................................. 66

Datavoorbeeld: E-cigarettes en craving ................................................................................................................ 67

Doel ..................................................................................................................................................................... 68

Terminologie en dataformaten ............................................................................................................................. 69

De eenvoudigste repeated metingen design ......................................................................................................... 69

Meer complexe designs ........................................................................................................................................ 71
1 within-subject factor .............................................................................................................................................. 71
1 between-subject en 1 within-subject factor ........................................................................................................... 74

Statistische interferentie ...................................................................................................................................... 75
1 within-subject factor .............................................................................................................................................. 76
1 between-subject en 1 within-subject factor ........................................................................................................... 78

Diverse topics....................................................................................................................................................... 80
Effectgrootte ............................................................................................................................................................. 80
Assumpties ................................................................................................................................................................ 80
Steekproefgrootte berekenen ................................................................................................................................... 82

Chapter 8: Simple lineair regression ..................................................................................................................... 83

Chapter 8: Eenvoudige lineaire regressie: Simple but powerful ............................................................................ 83

Datavoorbeeld: Predicatie van 100 m in 2020....................................................................................................... 84

Doel ..................................................................................................................................................................... 85

Exploratieve (of verkennende) dataanalyse .......................................................................................................... 85

Notatie & interpretatie ........................................................................................................................................ 86
Populatie model ........................................................................................................................................................ 86
Interpretatie van ,- ................................................................................................................................................. 87
Interpretatie van ,% ................................................................................................................................................. 88

Statistische inferentie .......................................................................................................................................... 90
Schatting van de regressiecoëfficiënten .................................................................................................................... 90
Onzekerheid van ,% en ,- ....................................................................................................................................... 91



3

, Betrouwbaarheidsinterval......................................................................................................................................... 93
Hypothesetests .......................................................................................................................................................... 93
Effectgrootte ............................................................................................................................................................. 95
Effectgrootte: Associatie sterkte .......................................................................................................................... 95
Effectgrootte: ruw regressiegewicht en bijbehorend CI ...................................................................................... 95
Effectgrootte: gestandaardiseerd regressiegewicht ............................................................................................ 96
Predictie ............................................................................................................................................................... 96

Assumpties .......................................................................................................................................................... 97
Assumpties: ............................................................................................................................................................... 98
Flexibele smooth regressielijn .............................................................................................................................. 99
Uitschieters .......................................................................................................................................................... 99

Chapter 9: Simple lineair regression ....................................................................................................................103

Chapter 9: Simple lineair regression: Advanced simple linear regression .............................................................104

Datavoorbeeld: Mathematics of forgetting .........................................................................................................104

Doel ....................................................................................................................................................................105

Een verkeerd ingestelde poging: een lineaire relatie............................................................................................106

Betere/ sterkere modellen ..................................................................................................................................106
Model 1: exponentiële functie ........................................................................................................................... 108
Model 2: power functie ...................................................................................................................................... 109

Statistische interferentie .....................................................................................................................................109

Chapter 10: Multiple lineair regression ................................................................................................................111

Chapter 10: Multiple lineair regression................................................................................................................112

Datavoorbeeld: Burnout bij verpleegkundigen ....................................................................................................112

Doel ....................................................................................................................................................................113

Exploratieve data analyse....................................................................................................................................113

Multiple lineaire regressie model ........................................................................................................................114

Statistische inferentie .........................................................................................................................................116
Schatting van de regressiecoëfficiënten en de onzekerheid .................................................................................... 116
Formule voor .1 ................................................................................................................................................ 117
Effectgrootte ........................................................................................................................................................... 118
02 gerelateerde meting ..................................................................................................................................... 118
Hypothese tests ....................................................................................................................................................... 120

Er kunnen vreemde dingen gebeuren in het regressie-analyse ............................................................................122
Case 1: 23(5 ∙ -)5 is kleiner dan 2355 .................................................................................................................. 122
Case 2: 23(5 ∙ -)5 is groter dan 2355 ................................................................................................................... 123
Case 3: multicollineariteit........................................................................................................................................ 124



4

,Interpretatie van regressiegewichten ..................................................................................................................125

Assumpties checken in multiple lineaire regressie ...............................................................................................126

Chapter 11: Speciale predictoren.........................................................................................................................127

Chapter 11: Speciale predictoren.........................................................................................................................128

Doel ....................................................................................................................................................................129

Categorische predictors .......................................................................................................................................129
Hoofdeffecten model............................................................................................................................................... 131
Interactie model ...................................................................................................................................................... 133

Squared predictoren (kwadraat van predictoren) ................................................................................................135
Het toevoegen van categorische hoofdeffecten aan het kwadratische model ................................................. 137

Putting it all together ..........................................................................................................................................137
Interpretatie ............................................................................................................................................................ 138

Chapter 13: Get Validated ...................................................................................................................................139

Chapter 13: Get validated : Validatie van regressiemodellen ...............................................................................140

Data voorbeeld: Salarisgegevens .........................................................................................................................140
Big Data, maar ernstige beperkingen ................................................................................................................. 143

Doel ....................................................................................................................................................................144

Modelselectie, generaliseerbaarheid en predictieve accuraatheid.......................................................................144

Methoden ...........................................................................................................................................................148
Cross-validatie ......................................................................................................................................................... 148
Andere methoden.................................................................................................................................................... 150

Interpretatie .......................................................................................................................................................151




5

, Chapters 1 (Introduction) + 2 (one-way ANOVA)
francis tuerlinckx
gaten
24 september 2019

Table of contents

Overview of the course

Overview

• See Toledo
– syllabus
– schedule


Overview – team

• Instructor: Francis Tuerlinckx
• Teaching assistants:
– Maja Fischer, Febe Brackx, and Sara Herrebosch (statistiek vier)
– Tim Loossens, Sigert Ariens, and Sara Herrebosch (statistics four)


Overview – Goal + content

• introduction to the most common data-analytical methods in psychology
• passive insight (what, how, . . .) and elementary active insight (apply to simple data sets)
• content:
– one-way ANOVA – contrasts – sample size planning – assumptions – multiway anova – repeated
measures
– simple linear regression – mathematical models – multiple linear regression – special predictors –
design matrices – cross validation


Overview – Prerequisites

• basics of descriptive and inductive statistics
• no advanced math


Overview – Lectures times

• Statistiek vier
– Tuesday 2pm-4pm (VHI 01.29)
– Friday 2pm-4pm (VHI 01.29)
• Statistics four
– Wednesday 9:30am-11am (VHI 01.40)
– Friday 4pm-6pm (PSI 01.90)
• but check schedule on Toledo for details



1

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller theAstudy. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $5.27. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

51056 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$5.27  18x  sold
  • (0)
Add to cart
Added