100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Complexe getallen $4.90   Add to cart

Summary

Samenvatting Complexe getallen

 10 views  0 purchase
  • Course
  • Institution
  • Book

Samenvatting complexe getallen

Last document update: 3 year ago

Preview 2 out of 6  pages

  • No
  • Appendix h
  • August 21, 2021
  • September 13, 2021
  • 6
  • 2021/2022
  • Summary
avatar-seller
1. Conventies
2. Definities
3. Machten i
4. Bewijs voor Eulervorm
5. ei x = cos(x) + i sin(x) uit Taylor-reeksen
6. Geconjugeerd complexe
7. Verschil
8. Product
9. Machtsverheffen
10. Voor differentiëren en integreren van goniometrische machten
11. Lineaire functie
11.1. Inverse
12. Polynoom
12.1. Oplossingsmethoden
12.1.1. Trial and error
12.1.2. Kwadraat afsplitsen
12.1.3. Omzetten naar Eulervorm
12.2. Inverse goniometrische hoeken




1/6 © Peter Zomerdijk

, 1. Conventies

• voorbeelden zijn omkaderd


2. Definities
• complexe eenheid : i2 = ‒1 (NIET i = √‒ 1)
• verzameling complexe getallen : ℂ = { a + bi | a, b Є ℝ }
• normaalvorm : z = a + bi
• reële deel (x-as of Re-as) : a = Re(z)
• imaginaire deel (y-as of Im-as) : b = Im(z)
• modulus is de lengte : |z|= √a2 + b 2
b
• argument is de hoek met de Re-as : (z) = ϕ = arctan (a)
• modulo van de hoek
• als a > 0 : 2kπ
• als a < 0 : (2k+1)π
• uit de grafische weergave : a = |z| cos ϕ ꓥ b = |z| sin ϕ
• poolvorm : z = |z| (cos ϕ + i sin ϕ)
• uit Taylor-reeksen : ei ϕ = cos ϕ + i sin ϕ ⇒ ei π + 1 = 0
• Eulervorm : z = |z| ei ϕ
• complexe getallen zijn niet te ordenen, dus geen > of <

3. Machten i
n∈ℕ⇒
• i 4n = i 0 =1 = i 4n+4 = ‒ i · i = 1
• i 4n+1 = 1 · i =i etc.
• i 4n+2 =i·i =‒1
• i 4n+3 =‒1·i =‒i
4. Eulervorm
• bewijs: eia · eib = (cos(a) + i sin(a)) · (cos(b) + i sin(b))
= cos(a) cos(b) – sin(a)sin(b) + i (sin(a) cos(b) + cos(a) sin(b))
= cos(a + b) + i sin(a + b) =
e i(a+b)
b
i arctan( )
• van Eulervorm naar normaalvorm : z = √a2 + b 2 e a




2/6 © Peter Zomerdijk

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller PAJZ. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $4.90. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

75323 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$4.90
  • (0)
  Add to cart