100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Apuntes ingeniería biomedica $7.49   Add to cart

Class notes

Apuntes ingeniería biomedica

 16 views  0 purchase
  • Course
  • Institution
  • Book

apuntes completos que ayudara al cursado de la carrera ingeniería biomédica

Preview 4 out of 205  pages

  • August 22, 2021
  • 205
  • 2021/2022
  • Class notes
  • Salica
  • All classes
avatar-seller
CÁLCULO II – INTEGRAL INDEFINIDA 2020

CÁLCULO II – INTEGRAL INDEFINIDA

El problema abordado en la Asignatura Cálculo I fue, dada una función f hallar su función derivada
.
Ahora nos ocuparemos del problema inverso: dada la función derivada , queremos determinar la
función original f.
Muchas aplicaciones del Cálculo se relacionan con ésta situación.


Ejemplo 1:
Determine la función f tal que su derivada es
Resolución:
De lo que sabemos de derivada podemos proponer como solución



Pensando que

[ ]

Pero no es la única función que podemos haber propuesto, por ejemplo, también



Pensando que

[ ]

Y también


Pensando que

* +

Y podemos escribir una expresión general para la función f buscada



Pensando que

[ ]

Todas las funciones propuestas son solución del problema.
Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán
1

, CÁLCULO II – INTEGRAL INDEFINIDA 2020
Las funciones se denominan antiderivadas de y la función f se denomina antiderivada
de general .
Para evitar confusiones, usaremos letras mayúsculas para denotar las antiderivadas de una función.




DEFINICIÓN
Una función F es una antiderivada o primitiva de una función f si y solo si




Volviendo al Ejemplo 1:
Las funciones son primitivas de y la función f es la primitiva general de .




Teorema: Representación de Antiderivadas
Si F es una antiderivada de f en un intervalo I entonces G es una antiderivada de f en el intervalo I
si y sólo si G es de la forma , donde C es una constante.


La operación de encontrar la antiderivada general de una función se denomina INTEGRACIÓN y
se denota con de la siguiente manera:








Función Diferencial de Una Constante de
integrando la variable de primitiva integración
integración



A ∫ se denomina integral indefinida de y se lee “integral de f de x diferencial de x”.


Volviendo al Ejemplo 1:
El resultado obtenido lo podemos escribir con el símbolo de integral indefinida de la siguiente
manera



Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán
2

, CÁLCULO II – INTEGRAL INDEFINIDA 2020
Observación:
La ecuación ∫ admite muchas soluciones, que difieren en una constante entre si. Eso
significa que las gráficas de dos primitivas cualesquiera de son traslaciones verticales una de la
otra.
La siguiente gráfica muestra varias primitivas
de la forma







En muchas de las aplicaciones de la integración
se nos da suficiente información como para
determinar una primitiva particular. Para
hacerlo, solamente necesitamos conocer un
punto de la primitiva particular que estamos
buscando , a esta información se la
llama condición inicial.




RESULTADO
La integración y la diferenciación son operaciones inversas.
Demostración
• Primero vamos a probar que la diferenciación es el proceso inverso de la integración

[∫ ] [∫ ]

[ ]
[ ]




Por lo tanto , la diferenciación es la proceso inverso de la integración

Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán
3

, CÁLCULO II – INTEGRAL INDEFINIDA 2020
• Segundo probaremos que la integración es la operación inversa de la diferenciación.

∫[ ] ∫



Por lo tanto , la integración es la operación inversa de la diferenciación


Estas características de procesos inversos, nos permiten obtener reglas de integración directamente
de las reglas de derivación


TEOREMA: Reglas Básicas de Integración
1.- Regla de la Constante



2.- Regla de la Potencia



3.- Regla del múltiplo constante

∫ ∫

4.- Regla de la suma o diferencia

∫[ ] ∫ ∫



Ejemplo 2:
Determine la integral indefinida

∫ √ ∫ ∫( √ )


∫ ∫ ∫



Resolución:

∫ √ √



∫ ∫


Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán
4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller florlopezcarrasco. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67474 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$7.49
  • (0)
  Add to cart