100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Rijen en Reeksen $6.33
Add to cart

Summary

Samenvatting Rijen en Reeksen

 5 views  0 purchase
  • Course
  • Institution

Korte maar krachtige samenvatting, compleet en zonder dubbelingen, met duidelijke voorbeelden als geheugensteun.

Last document update: 3 year ago

Preview 2 out of 6  pages

  • September 1, 2021
  • September 13, 2021
  • 6
  • 2021/2022
  • Summary
avatar-seller
1. Conventies
2. Rij
2.1. Rekenkundige rij
2.2. Meetkundige rij
2.3. Stellingen
2.4. Begrensdheid
2.4.1. Bepalen van de grens
2.4.1.1. Volledige inductie
2.5. n in de macht
2.6. Iteratieve functies
2.7. Repeterende rij
3. Reeks
3.1. Rij en reeks
3.2. Rekenkundige reeks
3.3. Meetkundige reeks
3.4. Harmonische reeks
3.5. Van decimalen naar breuken
3.6. Telescopische som
4. Rekenmachine
4.1. Conventies
4.2. Stapsgewijs
4.3. Direct




1/6 © Peter Zomerdijk

, 1. Conventies

• voorbeelden zijn omkaderd


2. Rij

2.1. Rekenkundige rij
Verschil (v) : bij iedere stap n wordt het verschil v er bij opgeteld
• directe formule : an = a1 + (n – 1) v
• recursieve formule : an = an-1 + v met a1 = begingetal

{an }∞
n=1 = {5, 9, 13, ...} ⇒ v = 4 en a1 = 5
directe formule an = 5 + 4(n – 1) = 1 + 4n
recursieve formule an = an‒1 + 4 en a1 = 5

• verschilrij is de rij {a2 – a1, a3 – a2, ..... , an – an‒1}
• de som van de eerste n termen is ∑n1 sn = ½ n (a1 + an)

2.2. Meetkundige rij
Reden (r) : bij iedere stap n wordt met de reden r vermenigvuldigd
• directe formule : an = a1 · r(n ‒ 1)
• recursieve formule : an = an-1 · r met a1 = begingetal

{an }∞
n=1 = {2, 6, 18, ...} ⇒ r = 3 en a1 = 2
Directe formule an = 2 · 3(n – 1)
Recursieve formule an = 3 · an‒1 en a1 = 2


2.3. Stellingen
• als lim an bestaat is de rij convergent, anders divergent
n→∞
• als lim |an | = 0 dan lim an = 0. Alleen gebruiken als de limiet naar 0 gaat
n→∞ n→∞
• insluitstelling: als voor alle n geldt an ≥ bn ≥ cn en lim an = lim cn dan lim bn = lim an
n→∞ n→∞ n→∞ n→∞
• r<0 : lim nr = 0
n→∞
• r=0 : lim nr = 1
n→∞
• r>0 : lim nr is divergent
n→∞
• –1 < r < 1 : lim r n = 0
n→∞
• r=1 : lim r n = 1
n→∞
• r ≤ ‒1 ꓦ r > 1 : lim r n is divergent
n→∞
• voor convergente rijen geldt lim an = lim an+1
n→∞ n→∞


2.4. Begrensdheid
Een rij is convergent wanneer het voldoet aan:
• stijgende rij : Ɐ n ϵ ℕ+ , ∃ M ϵ ℝ | a(n+1) > an ꓥ M ≥ an
• dalende rij : Ɐ n ϵ ℕ+ , ∃ m ϵ ℝ | a(n+1) < an ꓥ m ≤ an


2/6 © Peter Zomerdijk

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller PAJZ. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $6.33. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

51292 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$6.33
  • (0)
Add to cart
Added