100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Overzicht Stof Deel 2 (samenvatting) Analyse 1 NA $7.05   Add to cart

Summary

Overzicht Stof Deel 2 (samenvatting) Analyse 1 NA

 4 views  0 purchase
  • Course
  • Institution
  • Book

Overzicht stof (deel 2) van Analyse 1 NA

Preview 2 out of 7  pages

  • Yes
  • September 10, 2021
  • 7
  • 2021/2022
  • Summary
avatar-seller
Oneigenlijke integralen:
Improper integrals of type 1:

If f continuous on [a, ∞), we define the improper integral of f over [a, ∞) as a limit of proper integrals




SEHdx-hi.%a7sdx.bjtlsdx-nli.s/b5HdxSbaEl dx-
If f continuous on (-∞, b], then we define




==> als de limiet bestaat, dan convergeert de oneigenlijke integraal; als de limiet niet bestaat, dan divergeert de

oneigenlijke integraal


Improper integrals of type 2:
if f continuous on interval (a,b] and is possibly unbounded near a, we define the improper integral:

↳ dx
Linga ,




if f continuous on [a,b) and is possibly unbounded near b, we define


J !EHdx= Ling f !FHdx -




==> als de limiet bestaat, dan convergeert de oneigenlijke integraal; als de limiet niet bestaat, dan

divergeert de oneigenlijke integraal


p-integrals:

if 0 < a < ∞, then

IT
Ja {
converges to
?
,
is p
.
>

Ca) -


pdx
diverges to no
if p El




pa 'T if pe
{
,
converses to
(b) J! ×
-


pa ,
diverges to re if P ? I

, Zo ook,


↳ Pdx converge ert voor
p > -
l J Pdx diver geert voor alle p




J Pdx Carver geert voor p , -
,
J -


Pdx diver
geert voor alle p

,




A comparison theorem for integrals

Let -∞ < a < b < ∞, and suppose that functions f and g continuous on interval (a,b) and satisfy 0 < f(x) < g(x).



if
Jbagcxsdx converges, then so does fbufcxsdx
and
Sbajcxsdxsfbagcxdx
Equivalently, if J!gCx)dx diverges to ∞, then so does Jbaflxsdx ( and satisfy gas >
5-
Cx) > o )



Vb .
Gu na voor

Xu
Welke a e IR
f! d-
convergent .




De integrand Inc ,
is continue
op ( o te) ,
.
In (E) = -
I
,
dues In ( x) E -
I en x
"
> o .




Xu
Stel
fcxj-eh@iudutfkS2oophetdomeinenglxS-xa.Dun
"

genet : O c E X
y ,
×




Jxhdx convergent J J
xu
We we ten dat
By comparison voor a > -
t .
converge ert
-
Inch
dx = -




,
dx dan 00k



Nu toner we aan dat de integrant diver geert voor a -_ -
l :




In 11h (E) I
J !↳d× ft In
'
lnllncxsl
I! ! lnlultc dx=
tiny
=
-
-
du lnllucxjltc
-


→ → = s
-

-




× , a.
i.
Type 2

Xh
J
-
'
x

f
dx diver geert by comparison
Oman .

, diverge ren alle dx voor al -
look want > > 0

Ink) Ink)
,




Dus de integrant convergeert voor a > -
I en diver geert voor as
-
I




vb 2 .
Depaul of de oneiyenhjke integrant J! ! × + ×
converge ert of diver geert .




De integrant is

"
improper of both types
"
,
dies we Kuennen Schryver
J! ! × + ×
t
)! ! × + ×


Op (o ,
I ] is xstx > X
,
dins :




floe !
"

{ ou !


)
L →
By comparison convergent
× + ×
→ p -

- I < I →
convergent
h '
op a. → is # + × > ×
'
,
aus :
aus de
integral convergent



[ ×
! + ×
CJ s , →

By
E
comparison convergent

p - > I →
convergent

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller sambeckers2. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.05. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

64438 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$7.05
  • (0)
  Add to cart