Oneigenlijke integralen:
Improper integrals of type 1:
If f continuous on [a, ∞), we define the improper integral of f over [a, ∞) as a limit of proper integrals
SEHdx-hi.%a7sdx.bjtlsdx-nli.s/b5HdxSbaEl dx-
If f continuous on (-∞, b], then we define
==> als de limiet bestaat, dan convergeert de oneigenlijke integraal; als de limiet niet bestaat, dan divergeert de
oneigenlijke integraal
Improper integrals of type 2:
if f continuous on interval (a,b] and is possibly unbounded near a, we define the improper integral:
↳ dx
Linga ,
if f continuous on [a,b) and is possibly unbounded near b, we define
J !EHdx= Ling f !FHdx -
==> als de limiet bestaat, dan convergeert de oneigenlijke integraal; als de limiet niet bestaat, dan
divergeert de oneigenlijke integraal
p-integrals:
if 0 < a < ∞, then
IT
Ja {
converges to
?
,
is p
.
>
Ca) -
pdx
diverges to no
if p El
pa 'T if pe
{
,
converses to
(b) J! ×
-
pa ,
diverges to re if P ? I
, Zo ook,
↳ Pdx converge ert voor
p > -
l J Pdx diver geert voor alle p
J Pdx Carver geert voor p , -
,
J -
Pdx diver
geert voor alle p
,
A comparison theorem for integrals
Let -∞ < a < b < ∞, and suppose that functions f and g continuous on interval (a,b) and satisfy 0 < f(x) < g(x).
if
Jbagcxsdx converges, then so does fbufcxsdx
and
Sbajcxsdxsfbagcxdx
Equivalently, if J!gCx)dx diverges to ∞, then so does Jbaflxsdx ( and satisfy gas >
5-
Cx) > o )
Vb .
Gu na voor
Xu
Welke a e IR
f! d-
convergent .
De integrand Inc ,
is continue
op ( o te) ,
.
In (E) = -
I
,
dues In ( x) E -
I en x
"
> o .
Jxhdx convergent J J
xu
We we ten dat
By comparison voor a > -
t .
converge ert
-
Inch
dx = -
,
dx dan 00k
Nu toner we aan dat de integrant diver geert voor a -_ -
l :
In 11h (E) I
J !↳d× ft In
'
lnllncxsl
I! ! lnlultc dx=
tiny
=
-
-
du lnllucxjltc
-
→ → = s
-
-
× , a.
i.
Type 2
Xh
J
-
'
x
f
dx diver geert by comparison
Oman .
, diverge ren alle dx voor al -
look want > > 0
Ink) Ink)
,
Dus de integrant convergeert voor a > -
I en diver geert voor as
-
I
vb 2 .
Depaul of de oneiyenhjke integrant J! ! × + ×
converge ert of diver geert .
De integrant is
"
improper of both types
"
,
dies we Kuennen Schryver
J! ! × + ×
t
)! ! × + ×
Op (o ,
I ] is xstx > X
,
dins :
floe !
"
{ ou !
)
L →
By comparison convergent
× + ×
→ p -
- I < I →
convergent
h '
op a. → is # + × > ×
'
,
aus :
aus de
integral convergent
[ ×
! + ×
CJ s , →
→
By
E
comparison convergent
p - > I →
convergent
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller sambeckers2. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $7.05. You're not tied to anything after your purchase.