100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Probabilité et statistiques $3.23   Add to cart

Class notes

Probabilité et statistiques

 10 views  1 purchase
  • Course
  • Institution

Les statistiques sont construites sur les probabilités : sans probabilités, les statistiques sont des recettes de cuisine difficiles `a comprendre et donc `a mémoriser.

Preview 2 out of 8  pages

  • September 10, 2021
  • 8
  • 2020/2021
  • Class notes
  • Catellier
  • Cours de 1 à 4
avatar-seller
Probabilité et stat

I. Probabilité

Statistique: branche des mathématiques ayant pour objet l’analyse et l’interprétation des données
quantifiables. Exemples fondamentaux : diversité écologique, temps de division des cellules, tailles
des étudiants.

- Décrire des données:
 Tableau des effectifs, des fréquences, moyenne, médiane (stat descriptive)
 Histogramme (manque de précision)
Problèmes : effectif et classes (taille des classes)

Notion d’histogramme:
On fixe l4aire, l’Aire de tous les histogrammes normalisés à 1 afin de pouvoir les comparer pour une
meilleure visualisation du monde  stat descriptive

II. Statistique
 Pour prédire et ne pas seulement décrire
 Se concentre sur les probabilités continues donc sur le tirage au hasard pour en tirer des
informations (variance/espérance)

A. Loi de probabilité

: Univers: ensemble des possibilités, souvent =R ou = [0 ;+]
Evènement : fait partie de  : A C  donc A= évènement
Probabilité, sur : est une application P qui prend les évènements et renvoie à un nombre entre 1 et 0
qui vérifie:
o P ()=1
o Si A et B disjoints : P(A) U P(B)=P(A) x P(B)

PROPRIETE: P( Ac )=1-P(A) et P(AUB)=P(A)+ P(B)+P(AB)

PREUVE:
1. P(A U Ac)=1=P()
De plus A et Ac sont disjoint donc P(AUA)=P(A) + P(Ac )
2. On a : AUB= (A/B) U (AB) U (A\B) On peut donc dire : P(AUB)= P(A/B)+(AB)+P(A\B)
Mais A= (A/B) U (AB) donc P(A)= P(A/B)+P(AB)
De même B= (A/B) U (AB) donc P(B)=P(A/B)+P(AB)
 Somme des 3 probabilités : P(AUB)=P(A)- P(AB)+P(B)+ P(AB) :autant qu’au début

B. Variable aléatoire

Variable aléatoire : une fonction de dans R, on prend un nombre au hasard:
Exemple : ={1,…,6}
On lance deux dés à 6 faces et on regarde la somme des dés
L’application X : x  R soit x1*x2 x1+x2
La loi d’une variable aléatoire est une probabilité défini sur R par P(XA)=Px(A)
Exemple : ={1,…,6}x{1,…,6}
1 1 1 1 2 1
P({i,j})= x = 36 Donc P(X=2)= et P(X=3)= =
6 6 ¿ 36 36 18
¿

, C. Densité
1. Intégrale
A
Intégrale : On dit que f de est une intégrale si Alim
→+ ∞
¿ ∫ ¿ f ( x )∨¿ ¿dx est f(x)
−A
+∞ A
Dans ce cas : ∫ f ( x ) dx = Alim
→+ ∞
∫ f ( x ) dx
−∞ −A


Exemple : f : x f(x)=0 si x<0 et e-x si x>0
+∞ A 0 A

∫ f ( x ) dx = Alim
→+ ∞
f (x)  ∫ f ( x ) dx = ∫ f ( x ) dx +∫ f ( x ) dx
−∞ −A −A 0
A
−x
Donc : ∫ e dx= [-e-x]0A = 1-e-A
0
+∞
−1
Donc : ∫ f ( x ) dx = Alim
→+ ∞
1−e =1
−∞
2. Densité
+∞
Densité : f de R dans R est une densité si f(x)>0 pour tout x et ∫ f ( x ) dx =1
−∞


PROPRIETE: Soit f la densité et X:(,P)R une variable aléatoire. On dit que f est la densité de X si
b
pour tout point [a, b] C R P(XA)=∫ f ( x ) dx
a
2
−x
Si on prend une variable aléatoire qui à pour densité f; P(x [1, 2])=∫ e dx=[-e-x]12=e-e2
1


Densité : limite des histogrammes lorsqu’il y a beaucoup de donnés, sert à calculer des probabilités.

Exemple 1 : Soit f de R dans R une fonction tel que f(x)=0 si x<0 et e-x si x>0
+∞ 0 +∞ +∞ +∞

∫ f ( x ) dx = ∫ f ( x ) dx +∫ f ( x ) dx=∫ f ( x ) dx=∫ e−x dx=[-e -x
]0+=1-e-2=1
−∞ −∞ 0 0 0
3
−x
On peut calculer P ([2, 3]) = ∫ e dx=[-e-x]0+=-e-2-e-3
2


1
Exemple 2 : Pour a<b, on définit pour tout x R f(x)=0 si x[a, b] et si x[a, b]
b−a
1
b>a donc b-a>0 donc > 0 donc f(x)>0
b−a
+∞ a b +∞ b b
1 b−a
∫ f ( x ) dx = ∫ f ( x ) dx +∫ f ( x ) d x+ ∫ f ( x ) dx=∫ f ( x ) dx =∫ b−a
dx =
b−a
=1
−∞ −∞ a b a a
 f est une fonction de densité
On peut calculer P(X[0.7; 0.85]) avec a=0 et b=1
0.85
1
= ∫ 1−0 dx =0.85-0.7=0.15
0.7


( x−m)2 1 -
Exemple 3: m est un nombre et >0, on définit pour tout xR f(x)= e
√2❑2 22

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller ileanaguedes. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.23. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

73918 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$3.23  1x  sold
  • (0)
  Add to cart