Een overzicht van de belangrijke begrippen en stellingen in de (pure) analyse. Het is gebaseerd op het vak Inleiding Analyse aan de UU en het bijbehorend dictaat van E. van der Ban.
Lemma 1.2 (Ongelijkheid van Cauchy-Schwarz)
Voor ieder tweetal x, y ∈ Rn geldt:
| < x, y > | ≤ ||x||||y||
(Deze ongelijkheid is een gelijkheid dan en slechts dan als x en y lineair onafhankelijk zijn).
Lemma 1.3
Voor alle x, y ∈ Rn en λ ∈ R geldt:
(a) ||x|| ≥ 0 en ||x|| = 0 ⇐⇒ x = 0
(b) ||λx|| = |λ|||x||
(c) ||x + y|| ≤ ||x|| + ||y|| (driehoeksongelijkheid)
Gevolg 1.5
(a) (’Herhaalde driehoeksongelijkheid’) Voor alle m ≥ 2, x1 , ..., xm ∈ Rn geldt:
||x1 + ... + xm || ≤ ||x1 || + ... + ||xm ||
(b) (’Omgekeerde driehoeksongelijkheid’) Voor alle x, y ∈ Rn geldt:
||x − y|| ≥ |||x|| − ||y|||
Lemma 1.7 Voor elke x ∈ Rn geldt: Pn
(a) |xi | ≤ ||x|| voor alle 1 ≤ i ≤ n. (b) ||x||leq i=1 |xi |. Opmerking: hiervoor zijn alleen algemene eigen-
schappen van de norm (1.3) gebruikt, dit geldt derhalve voor elke norm.
1.2 Limieten van functies
Definitie 1.12
Laat f : Rn → Rm een functie zijn, en a ∈ Rn en b ∈ Rm punten. Men zegt dat f in a de limiet b (notatie:
limx→a f (x) = b) als voor iedere > 0 een δ > 0 bestaat met de volgende eigenschap: Als x ∈ Dom(f ) en
d(x, a) < δ, dan d(f (x), b) <
Lemma 1.16
Zij f : Rn → Rm , a ∈ Rn en b ∈ Rm . Dan zijn de volgende beweringen equivalent:
(a) limx→a f (x) = b;
(b) limx→a d(f (x), b) = 0
Definitie 1.17
Is a ∈ Rn en r > 0, dan definieren we de (open) bol met middelpunt a en straal r door:
B(a; r) = {x ∈ Rn | d(x, a) < r}
Definitie 1.12’
Met de definitie van bollen kunnen we de limiet-definitie als volgt herschrijven:
Voor elke > 0, bestaat er een δ > 0, zodat f (Dom(f ) ∩ B(a; δ)) ⊂ B(b; ).
Opmerking 1.19
Er kan zich de merkwaardige situatie voordoen dat een functie f : Rn → Rm meer dan één limiet heeft voor
x → a, Dit gebeurt as er een δ > 0 bestaat zodat B(a; delta) ∩ Dom(f ) = ∅.
Bewering: Veronderstel dat er een δ > 0 bestaat zo dat B(a; δ) ∩ Dom(f ) = ∅. Dan geldt dat voor elke
b ∈ Rm dat limx→a f (x) = b.
1
,Definitie 1.20
Zij A ⊂ Rn . Onder een limietpunt van A verstaan we een punt a ∈ Rn met de volgende eigenschap:
voor alle δ > 0 geldt: B(a; δ) ∩ A 6= ∅
Lemma 1.22 (eenduidigheid van limiet)
Zij f : Rn → Rm een functie en a een limietpunt van Dom(f ). Veronderstel dat b, c ∈ Rm en dat
limx→a f (x) = b en limx→a f (x) = c. Dan geldt b = c.
1.3 Rekenregels voor limieten
Lemma 1.25 (Somregel)
Laat f : Rn → Rm en g : Rn → Rm functies zijn, en a ∈ Rn en b, c ∈ Rm punten.
Als limx→a f (x) = b en limx→a g(x) = c, dan limx→a (f (x) + g(x)) = b + c.
Lemma 1.26 (Productregel)
Laat f : Rn → R en g : Rn → Rm functies zijn, en a ∈ Rn , λ ∈ R, b ∈ Rm .
Als limx→a f (x) = λ en limx→a g(x) = b, dan limx→a f (x)g(x) = λb.
Lemma 1.28 (Quotientregel)
Laat f : Rn → R een functie, a ∈ Rn en λ ∈ R, λ 6= 0.
1
Als limx→a f (x) = λ, dan limx→a f (x) = λ1
Lemma 1.30
Laat f : Rn → Rm een functie zijn en a ∈ Rn en b ∈ Rm punten. Dan zijn de volgende beweringen equiva-
lent:
(a) limx→a f (x) = b;
(b) limx→a fi (x) = bi voor alle 1 ≤ i ≤ m
Lemma 1.32
Laat f : Rn → Rm en g : Rm → Rp functies zijn, en a ∈ Rn , b ∈ Rm en c ∈ Rp punten.
Als limx→a f (x) = b en limy→b g(y) = c dan limx→a g(f (x)) = c.
1.4 Limieten en ongelijkheden
Lemma 1.33
Laat D ⊂ Rn zijn en a een limietpunt van D. Laat f, g : D → R functies zijn en veronderstel dat
limx→a f (x) = b en limx→a g(x) = c met b, c ∈ R.
Als f (x) ≤ g(x) voor alle x ∈ D dan geldt ook: b ≤ c.
Opmerking: strikte ongelijkheden blijven niet altijd behouden. Neem als voorbeeld D =]0, ∞] en f (x) = 0,
g(x) = x.
Lemma 1.35 (Insluitstelling)
Laat D ⊂ Rn en f, g, h : D → R een drietal functies met f (x) ≤ g(x) ≤ h(x) voor alle x ∈ D. Veronderstel
dat a ∈ Rn en dat er een λ ∈ R bestaat met limx→a f (x) = λ en limx→a h(x) = λ.
Dan geldt ook limx→a g(x) = λ.
1.5 Continuiteit
Definitie 1.38
Een functie f : Rn → Rm heeft continu in een punt a ∈ Rn als a ∈ Dom(f ) en bovendien: limx→a f (x) =
f (a).
De functie f heet continu op een verzameling A ∈ Rn als f continu is in elk punt a ∈ A. De functie f heeft
continu als hij continu is op Dom(f ).
2
, Lemma 1.41
Zij f = (f1 , ..., fm ) : Rn → Rm een functie en a ∈ Rn een punt. Dan zijn de volgende uitspraken gelijk-
waardig:
(a) De functie f is continu in a;
(b) Voor iedere 1 ≤ i ≤ m is de funcite fi continu in a.
Lemma 1.43
Laat f, g : Rn → Rm functies zijn en a ∈ Rn een punt. Als f en g continu zijn in a, dan is de somfunctie
f + g dat ook.
Lemma 1.44
Laat f : Rn → R en g : Rn → Rm functies zijn en a ∈ Rn een punt.
(a) Als f en g continu in a dan is f g dat ook.
(b) Als f continu is in a en bovendien geldt dat f (a) 6= 0, dan is ook de functie 1/f : x → 1/f (x) continu in a.
Lemma 1.45
Iedere rationele functie op Rn is continu op zijn domein.
Lemma 1.47
Laat f : Rn → Rm en g : Rm → Rp functies zijn.
(a) Is f continu in a en g continu in f (a), dan is de samenstelling g ◦ f continu in a.
(b) Zijn f en g continu op hun domein, dan is ook g ◦ f continu op zijn domein.
1.6 Toepassing: rekenregels voor differentieren
Veronderstel dat I ⊂ R een interval met meer dan één punt.
Definitie 1.49
Zij f : I → Rn en a ∈ I. De functie f heeft differentieerbaar in a als er een vector v ∈ Rn bestaat met:
f (x) − f (a)
limx→a =v
x−a
Lemma 1.53
Laat f : I → Rn differentieerbaar zijn in a. Dan is f continu in a.
Lemma 1.54
Zij f = (f1 , ..., fn ) : I → Rn een functie en a ∈ I. De functie f is differentieerbaar in a dan en slecht dan
als elke van de functies fi (1 ≤ i ≤ n) differentieerbaar is in a. Is f differentieerbaar in a dan geldt:
f 0 (a) = (f10 (a), ..., fn0 (a))
Lemma 1.55
Laat f, g : I → R differentieerbaar zijn in a ∈ I, zij λ ∈ R. Dan zijn ook de functies f + g, f g en λf
differentieerbaar in a. Voorts geldt:
(a) (f + g)0 (a) = f 0 (a) + g 0 (a)
(b) (f g)0 (a) = f 0 (a)g(a) + f (a)g 0 (a)
(c) (λf )0 (a) = λf 0 (a)
Is bovendien g(a) 6= 0 dan is ook de functie f /g differentieerbaar in a, en er geldt:
0 0
(a)g 0 (a)
(d) fg (a) = f (a)g(a)−f g(a)2
Stelling 1.56 (De kettingregel)
Zij f : I → R, a ∈ R, J ⊂ R een interval dat f (I) bevat en g : J → R. Als f en g differentieerbaar zijn in
a, resp. f (a), dan is g ◦ f differentieerbaar in a, met afgeleide:
(g ◦ f )0 (a) = g 0 (f (a))f 0 (a)
3
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller RichardSchoonhoven. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $4.74. You're not tied to anything after your purchase.