100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Sumario Series numéricas. $4.23
Add to cart

Summary

Sumario Series numéricas.

 2 views  0 purchase
  • Course
  • Institution

- Sucesión de números reales. - Límite de una sucesión. - Sucesión de sumas parciales o sumas acumuladas. - Propiedades de las series. - Series de términos positivos. - Teorema. Criterio de comparación estándar. - Teorema de condensación de Cauchy. - Teorema. Criterio de comparació...

[Show more]

Preview 1 out of 4  pages

  • September 14, 2021
  • 4
  • 2020/2021
  • Summary
avatar-seller
Tema 3. Series numéricas.
El estudio de las series se ocupa de saber si es posible o no sumar infinitos número y que
salga una cantidad finita. Cuando esta cantidad finita exista diremos que la serie converge,
y cuando esta cantidad sea infinita diremos que la serie diverge.

Sucesión de números reales.
Una sucesión es una aplicación, correspondencia o función en donde el conjunto de partida
son los número naturales.
𝑎: 𝑛: 𝑁 → 𝑅
𝑛 → 𝑎𝑛 = "𝑓ó𝑟𝑚𝑢𝑙𝑎" 𝑒𝑛𝑡𝑟𝑒 𝑙𝑙𝑎𝑣𝑒𝑠
Por ejemplo:
𝑛→ { } = {2,
𝑛+1
𝑛
3
2
,
4
3
,
5
4
,...,
𝑛+1
𝑛 }
Límite de una sucesión.
Se dice que el límite cuando n tiende a infinito de la sucesión an sale l si existe un radio
epsilon (ε) elegido que rodea a l de manera que fuera del intervalo haya una cantidad finita
de términos y dentro el resto.




|
Es decir, lim 𝑎𝑛 = 𝑙 si para ∀ε > 0existe un 𝑛0tal que 𝑛 > 𝑛0que verifica que 𝑎𝑛 − 𝑙 < ε.
𝑛→∞
|

Sucesión de sumas parciales o sumas acumuladas.
{ } { } {
𝑆𝑛 = 𝑆1, 𝑆2, 𝑆3,..., 𝑆𝑛 = 𝑎1, 𝑎1 + 𝑎2, 𝑎1 + 𝑎2 + 𝑎3,..., 𝑎1 + 𝑎2 + 𝑎3 +... + 𝑎𝑛}

{ }
Dada la sucesión 𝑎𝑛 , a la suma 𝑎1 + 𝑎2 + 𝑎3 +... + 𝑎𝑛 = ∑ 𝑎𝑛le llamamos serie numérica.
𝑛=1

Dicha serie converge si lim 𝑆𝑛 = ∑ 𝑎𝑛es un número, en caso contrario, diverge.
𝑛→∞ 𝑛=1



𝑛 2 𝑛
Teorema. La serie geométrica ∑ 𝑟 = 1 + 𝑟 + 𝑟 +... + 𝑟 converge si |𝑟| < 1, y diverge en
𝑛=0
caso contrario.

Propiedades de las series:
∞ ∞
1) ∑ 𝑘𝑎𝑛 = 𝑘 · ∑ 𝑎𝑛
𝑛=1 𝑛=1
∞ ∞ ∞
2) ( )
∑ 𝑎𝑛 + 𝑏𝑛 = ∑ 𝑎𝑛 + ∑ 𝑏𝑛
𝑛=1 𝑛=1 𝑛=1


Ejemplo:

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller merche2002. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $4.23. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

50990 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$4.23
  • (0)
Add to cart
Added