100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Sumario Cálculo en varias variables. $4.23
Add to cart

Summary

Sumario Cálculo en varias variables.

 4 views  0 purchase
  • Course
  • Institution

- Dominios y curvas de nivel. - Cálculo de límites. - Derivadas parciales. Plano tangente. - Función diferenciable en dos variables. - Derivada direccional. Gradiente. - Teorema de Schwartz. - Regla de la cadena. - Formula de Taylor. - Lagrangiano

Preview 2 out of 6  pages

  • September 14, 2021
  • 6
  • 2020/2021
  • Summary
avatar-seller
Tema 2. Cálculo en varias variables.
Dominios y curvas de nivel.
2 2
Dada una función 𝑓: 𝑅 → 𝑅 se define el dominio de la función como 𝑓 = {(𝑥, 𝑦) ∈ 𝑅 | 𝑓(𝑥, 𝑦) 𝑒𝑥𝑖𝑠𝑡𝑒}
Ejemplos:
𝑥𝑦 2
𝑓(𝑥, 𝑦) = 2 2 ; 𝐷𝑜𝑚𝑓 = 𝑅 − {(0, 0)}
𝑥 +𝑦
2 2
2 2 2
𝑓(𝑥, 𝑦) =
𝑥 +𝑦 −9
𝑥 {
; 𝐷𝑜𝑚𝑓 = (𝑥, 𝑦) ∈ 𝑅 |𝑥 + 𝑦 − 9 ≥ 0 ∧ 𝑥 ≠ 0 }
2 2 2 2 2
con la igualdad: 𝑥 + 𝑦 − 9 = 0; 𝑥 + 𝑦 = 3
2
𝑓(𝑥, 𝑦) = 𝑎𝑟𝑐𝑠𝑒𝑛(𝑥 + 𝑦); 𝐷𝑜𝑚𝑓 = (𝑥, 𝑦) ∈ 𝑅 | − 1 ≤ 𝑥 + 𝑦 ≤ 1 { }
−1≤𝑥+𝑦 ∧ 𝑥+𝑦≤1
𝑦 =− 𝑥 − 1 ∧ 𝑦=1−𝑥

2
Dada 𝑓: 𝑅 → 𝑅 tal que a cada valor de x se le hace corresponder el valor de
𝑓(𝑥, 𝑦), se llama curva de nivel k, a la curva 𝑓(𝑥, 𝑦) = 𝑘.

Ejemplos:
2 2
𝑓(𝑥, 𝑦) = 25 − 𝑥 − 𝑦
2 2 2 2 2
NIVEL 0: 25 − 𝑥 − 𝑦 = 0; 𝑥 + 𝑦 = 5
2 2 2 2 2
NIVEL 9: 25 − 𝑥 − 𝑦 = 9; 𝑥 + 𝑦 = 4
2 2 2 2 2
NIVEL 16: 25 − 𝑥 − 𝑦 = 16; 𝑥 + 𝑦 = 3
2 2 2 2 2
NIVEL 21: 25 − 𝑥 − 𝑦 = 21; 𝑥 + 𝑦 = 2
2 2 2 2 2
NIVEL 24: 25 − 𝑥 − 𝑦 = 24; 𝑥 + 𝑦 = 1
2 2 2 2 2
NIVEL 25: 25 − 𝑥 − 𝑦 = 25; 𝑥 + 𝑦 = 0

𝑓(𝑥, 𝑦) = |𝑥𝑦|
NIVEL 0: |𝑥𝑦| = 0
NIVEL 1: |𝑥𝑦| = 1
NIVEL 4: |𝑥𝑦| = 4

Cálculo de límites.
Se dice que lim 𝑓(𝑥) = 𝑙 si ∀ε > 0, ∃δ > 0, tal que si 𝑥|0 < |𝑥 − 𝑎| < δ entonces
𝑥→𝑎
|𝑓(𝑥) − 𝑙| < ε.

Ejemplo:
1 2
lim 2 𝑥 + 1 = 3
𝑥→2
∀ε > 0, ∃δ, 𝑥|0 < |𝑥 − 2| < δentonces
| 1 𝑥2 + 1 − 3| < δ
|2 |
| 𝑥 − 2| = | 1 𝑥2 − 4 | = | 1 (𝑥 + 2)(𝑥 − 2)| =
1 2
( ) 1
|𝑥 + 2||𝑥 − 2| < ε
|2 | |2 | |2 | 2
Suponemos que: 𝑓: [1. 5, 2. 5] → 𝑅
1 2ε 2ε
2
· 4. 5 · |𝑥 − 2| < ε; |𝑥 − 2| < 4.5
⇒δ = 4.5

, | |
∀ε > 0, ∃δ/||(𝑥, 𝑦) − (𝑎, 𝑏)|| < δ entonces ||𝑓(𝑥, 𝑦) − lim |< ε
|
| (𝑥,𝑦) → (𝑎,𝑏) |




Ejemplo:
3
2𝑥
Probar que lim 2 2 =0
(𝑥,𝑦) → (0,0) 𝑥 +𝑦

2 2 | 2𝑥3 |
∀ε > 0 ∃δ/ 𝑥 + 𝑦 < δ entonces | 2 2 | < ε
| 𝑥 +𝑦 |
3 2 2
| 2𝑥 | | 𝑥 | 𝑥 2 2
| 2 2 | = |2𝑥|| 2 2 | = |2𝑥| 2 2 ≤ |2𝑥| · 1 = 2|𝑥| < 2 𝑥 + 𝑦
| 𝑥 +𝑦 | | 𝑥 +𝑦 | 𝑥 +𝑦


2 2 2 2 ε ε
si quiero que 2 𝑥 + 𝑦 < ε, es decir, 𝑥 +𝑦 < 2
, basta tomar δ ≤ 2


Procedimiento para calcular un límite:
1.) Sustituir
lim 2𝑥𝑦 + 4 = 8
(𝑥,𝑦) → (1,2)
2.) Manipular y simplificar
3 3 2 2
lim
𝑥 𝑦−𝑥𝑦
= lim ( ) =
𝑥𝑦 𝑥 −𝑦 1
4 4 2 2 2 2 2
(𝑥,𝑦) → (1,1) 𝑥 −𝑦 (𝑥,𝑦) → (1,1) (𝑥 +𝑦 )(𝑥 −𝑦 )
lim
𝑥+𝑦+1−1
= lim ( 𝑥+𝑦+1−1)( 𝑥+𝑦+1+1) = lim
(𝑥+𝑦)
=
1
2 2
(𝑥,𝑦) → (1,−1) 𝑥 −𝑦 (𝑥,𝑦) → (1,−1) (𝑥2−𝑦2)( 𝑥+𝑦+1+1) (𝑥,𝑦) → (1,−1)
(𝑥+𝑦)(𝑥−𝑦)( 𝑥+𝑦+1+1) 4

2 2
𝑥
−𝑙𝑛 1+ 𝑦+1 ( 𝑥
)
𝑥
( )− ( ) +...⎤⎥⎦
−⎡⎢
𝑥 1 𝑥 1 𝑥
𝑥 2
lim
(𝑥,𝑦) → (0,0)
𝑦+1

𝑦
2 = lim
(𝑥,𝑦) → (0,0)
𝑦+1
⎣ 𝑦+1

𝑦
2
2 𝑦+1
= lim
(𝑥,𝑦) → (0,0)
2 (𝑦+1)2

𝑦
2 = lim
(𝑥,𝑦) → (0,0)
1
2 ( ) 𝑦



Definición. Dada una curva 𝐺(𝑥, 𝑦) = 0 que pasa por (𝑎, 𝑏) cuyos puntos
(𝑥, 𝑦) ∈ 𝐷𝑜𝑚𝑖𝑛𝑖𝑜 𝑑𝑒 𝑓
Supongamos 𝑦 = 𝑔(𝑥)
lim 𝑓(𝑥, 𝑦): = lim 𝑓(𝑥, 𝑔(𝑥))
(𝑥,𝑦) → (𝑎,𝑏) 𝑥→𝑎


Teorema. Si existe el límite, entonces coincide con el límite según cualquier dirección.
𝑥 𝑥
lim 𝑦
= [𝑥 = 𝑦] = lim 𝑥
=1
(𝑥,𝑦) → (0,0) 𝑥→0
𝑥 𝑥
lim 𝑦
= [𝑦 =− 𝑥] = lim −𝑥
=− 1
(𝑥,𝑦) → (0,0) 𝑥→0
𝑥 𝑥 1
lim 𝑦
= [𝑦 = 𝑚𝑥] = lim 𝑚𝑥
= 𝑚
⇒𝑚 ≠ 0
(𝑥,𝑦) → (0,0) 𝑥→0


3.) Intentar probar que el límite no existe.
3 3 4 3 2
𝑥𝑦 𝑚𝑥 𝑚𝑥
lim 2 6 = [𝑦 = 𝑚𝑥] = lim 2 6 6 = lim 6 4 =0
(𝑥,𝑦) → (0,0) 𝑥 +𝑦 𝑥→0 𝑥 +𝑚 𝑥 𝑥→0 1+𝑚 𝑥
3 3 3 6
3
lim
𝑥𝑦
2
𝑥 +𝑦
6 [
= 𝑥 = 𝑦 = lim ] 𝑦𝑦
6
𝑦 +𝑦
6 = lim
𝑦
2𝑦
6 =
1
2
(𝑥,𝑦) → (0,0) 𝑦→0 𝑦→0

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller merche2002. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $4.23. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

50990 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$4.23
  • (0)
Add to cart
Added