100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
FORMULARIO NÚMEROS COMPLEJOS $3.25   Add to cart

Class notes

FORMULARIO NÚMEROS COMPLEJOS

 6 views  0 purchase
  • Course
  • Institution

FORMULARIO DE : - NÚMEROS COMPLEJOS

Preview 1 out of 1  pages

  • October 6, 2021
  • 1
  • 2019/2020
  • Class notes
  • José antonio facenda aguirre
  • All classes
avatar-seller
NÚMEROS COMPLEJOS: FORMULARIO ▪ Si z = x + yi entonces se define la EXPONENCIAL DE Z por la fórmula:
𝑒 𝑧 = 𝑒 𝑥 𝑒 𝑦𝑖 = 𝑒 𝑥 (𝑐𝑜𝑠 𝑦 + 𝑖 𝑠𝑒𝑛 𝑦)
▪ SUMA Y RESTA DE NÚMEROS COMPLEJOS:
▪ Todo número complejo z = reiθ no nulo tiene exactamente n raíces n-ésimas
(a, b) + (c, d) = (a + c, b + d) (a, b) − (c, d) = (a − c, b − d)
distintas que vienen dadas por la fórmula siguiente:
▪ MULTIPLICACIÓN DE NÚMEROS COMPLEJOS: 𝑤𝑘 = 𝑟1/𝑛 𝑒 𝑖(𝜃+2𝑘𝜋)/𝑛 , k = 0, 1, . . . , n − 1
(a, b) · (c, d) = (ac − bd, bc + ad) El único w tal que w n = z y Arg(w) = Arg(z) n se llama RAÍZ n-ÉSIMA
▪ DIVISIÓN DE NÚMEROS COMPLEJOS: dados 𝑧1 = (𝑎, 𝑏), 𝑧2 = (𝑐, 𝑑) con 𝑧2 PRINCIPAL. Se obtiene tomando k = 0 en el enunciado anterior.
distinto del elemento neutro (0, 0), se define la división por la fórmula:
▪ Si z ∈ ℂ \ {0}, se define el LOGARITMO DE Z como:
𝑧1 𝑐 −𝑑 𝑎𝑐 + 𝑏𝑑 𝑏𝑐 − 𝑎𝑑
= 𝑧1 (𝑧2 )−1 = (𝑎, 𝑏) ൬ 2 2
, 2 2
൰=൬ 2 , ൰ log z = log ȁzȁ + iarg(z) = log ȁzȁ + i(θ + 2kπ), k ∈ Z,
𝑧2 𝑐 +𝑑 𝑐 +𝑑 𝑐 + 𝑑2 𝑐 2 + 𝑑2
donde log |z| es el logaritmo real del módulo de z y θ un argumento de z. La rama
También podemos escribir: principal del logaritmo se obtiene cuando se considera el argumento principal
𝑎 + 𝑏𝑖 𝑎𝑐 + 𝑏𝑑 𝑎𝑐 − 𝑏𝑑 de z.
= + 𝑖
𝑐 + 𝑑𝑖 𝑐 2 + 𝑑2 𝑐 2 + 𝑑2
▪ MÓDULO DE UN NÚMERO COMPLEJO z = x + i y:
ȁ𝑧ȁ = ඥ𝑥 2 + 𝑦 2
Es la distancia entre el punto (x,y) y el origen (0,0).
▪ COMPLEJO CONJUGADO DEL NÚMERO COMPLEJO z = a + i b:
തz = 𝑎 − 𝑖𝑏
El número zത es la reflexión en el eje real del punto z.
▪ DESIGUALDAD TRIANGULAR. Dados z,w ∈ C se cumple que
ȁ𝑧 + 𝑤 ȁ ≤ ȁ𝑧 ȁ + ȁ𝑤 ȁ
▪ Si z = x + yi es un número complejo no nulo, podemos escribir z del siguiente
modo
z = r cos θ + r senθ i = r(cos θ + i senθ)
Este modo de escribir z se llama FORMA TRIGONOMÉTRICA O POLAR.
▪ De todos los (infinitos) argumentos de un complejo z ≠ 0, existe un único valor
que queda comprendido en (−π, π]. Ese valor se llama ARGUMENTO
PRINCIPAL y será notado por Arg(z). También se llama VALOR PRINCIPAL
DEL ARGUMENTO.
▪ Sea θ ∈ R. Se define: 𝑒 𝑖𝜃 = 𝑐𝑜𝑠 𝜃 + 𝑖 𝑠𝑒𝑛𝜃

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller alistats. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.25. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

64438 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$3.25
  • (0)
  Add to cart